INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
ACS Appl Mater Interfaces. 2020 May 6;12(18):21020-21035. doi: 10.1021/acsami.9b21841. Epub 2020 Apr 21.
Graphene-based materials (GBMs) have been increasingly explored for biomedical applications. However, interaction between GBMs-integrating surfaces and bacteria, mammalian cells, and blood components, that is, the major biological systems in our body, is still poorly understood. In this study, we systematically explore the features of GBMs that most strongly impact the interactions of GBMs films with plasma proteins and biological systems. Films produced by vacuum filtration of GBMs with different oxidation degree and thickness depict different surface features: graphene oxide (GO) and few-layer GO (FLGO) films are more oxidized, smoother, and hydrophilic, while reduced GO (rGO) and few-layer graphene (FLG) are less or nonoxidized, rougher, and more hydrophobic. All films promote glutathione oxidation, although in a lower extent by rGO, indicating their potential to induce oxidative stress in biological systems. Human plasma proteins, which mediate most of the biological interactions, adsorb less to oxidized films than to rGO and FLG. Similarly, clinically relevant bacteria, , , , and , adhere less to GO and FLGO films, while rGO and FLG favor bacterial adhesion and viability. Surface features caused by the oxidation degree and thickness of the GBMs powders within the films have less influence toward human foreskin fibroblasts; all materials allow cell adhesion, proliferation and viability up to 14 days, despite less on rGO surfaces. Blood cells adhere to all films, with higher numbers in less or nonoxidized surfaces, despite none having caused hemolysis (<5%). Unlike thickness, oxidation degree of GBMs platelets strongly impact surface morphology/topography/chemistry of the films, consequently affecting protein adsorption and thus bacteria, fibroblasts and blood cells response. Overall, this study provides useful guidelines regarding the choice of the GBMs to use in the development of surfaces for an envisioned application. Oxidized materials appear as the most promising for biomedical applications that require low bacterial adhesion without being cytotoxic to mammalian cells.
基于石墨烯的材料(GBMs)在生物医学应用中得到了越来越多的探索。然而,GBMs 整合表面与细菌、哺乳动物细胞和血液成分(即我们体内的主要生物系统)之间的相互作用仍然知之甚少。在这项研究中,我们系统地研究了影响 GBMs 薄膜与血浆蛋白和生物系统相互作用的最主要特征。通过真空过滤具有不同氧化程度和厚度的 GBMs 制备的薄膜呈现出不同的表面特征:氧化石墨烯(GO)和少层 GO(FLGO)薄膜更氧化、更光滑、亲水性更强,而还原氧化石墨烯(rGO)和少层石墨烯(FLG)则氧化程度较低或非氧化、更粗糙、疏水性更强。所有的薄膜都促进了谷胱甘肽的氧化,尽管 rGO 的氧化程度较低,这表明它们有可能在生物系统中诱导氧化应激。在生物系统中起介导作用的人血浆蛋白吸附到氧化膜上的程度低于 rGO 和 FLG。同样,临床相关的细菌、、、、和、在 GO 和 FLGO 薄膜上的粘附程度较低,而 rGO 和 FLG 则有利于细菌的粘附和生存能力。薄膜内 GBMs 粉末的氧化程度和厚度引起的表面特征对人包皮成纤维细胞的影响较小;所有材料都允许细胞粘附、增殖和存活长达 14 天,尽管 rGO 表面的情况较差。所有的薄膜都能吸附血细胞,在较少或非氧化的表面上吸附的数量较多,尽管没有一种薄膜能引起溶血(<5%)。与厚度不同的是,GBMs 薄片的氧化程度强烈影响薄膜的表面形貌/形貌/化学性质,从而影响蛋白质的吸附,进而影响细菌、成纤维细胞和血细胞的反应。总的来说,这项研究为在预期应用中开发表面时选择 GBMs 提供了有用的指导。氧化材料似乎最有希望用于需要低细菌粘附但对哺乳动物细胞无细胞毒性的生物医学应用。
Int J Nanomedicine. 2014-7-11
ACS Appl Mater Interfaces. 2016-1-13
Colloids Surf B Biointerfaces. 2012-12-21
Int J Nanomedicine. 2020-8-6
Colloids Surf B Biointerfaces. 2013-5-23
ACS Nano. 2011-9-29
ACS Appl Bio Mater. 2020-1-21
Mater Sci Eng C Mater Biol Appl. 2019-12-24
Chem Sci. 2025-7-31
J Mol Liq. 2022-12-15
Nanoscale Adv. 2023-6-8
Int J Mol Sci. 2022-2-19
Biophys Rev (Melville). 2021-12