Wu Xiaoshuai, Qiao Yan, Guo Chunxian, Shi Zhuanzhuan, Li Chang Ming
Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China.
Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China.
Commun Chem. 2020 Jun 1;3(1):68. doi: 10.1038/s42004-020-0316-z.
Direct electron transfer at microbial anodes offers high energy conversion efficiency but relies on low concentrations of redox centers on bacterium membranes resulting in low power density. Here a heat-treatment is used to delicately tune nitrogen-doping for atomic matching with Flavin (a diffusive mediator) reaction sites resulting in strong adsorption and conversion of diffusive mediators to anchored redox centers. This impregnates highly concentrated fixed redox centers in the microbes-loaded biofilm electrode. This atomic matching enables short electron transfer pathways resulting in fast, direct electrochemistry as shown in Shewanella putrefaciens (S. putrefaciens) based microbial fuel cells (MFCs), showing a maximum power output higher than the conventional non-matched nitrogen-doped anode based MFCs by 21 times. This work sheds a light on diffusion mediation for fast direct electrochemistry, while holding promise for efficient and high power MFCs.
微生物阳极上的直接电子转移具有较高的能量转换效率,但依赖于细菌细胞膜上低浓度的氧化还原中心,导致功率密度较低。在此,采用热处理精细调节氮掺杂,使其与黄素(一种扩散介质)反应位点进行原子匹配,从而使扩散介质强烈吸附并转化为固定的氧化还原中心。这在负载微生物的生物膜电极中注入了高浓度的固定氧化还原中心。这种原子匹配实现了短电子转移路径,从而产生快速的直接电化学,如基于腐败希瓦氏菌(S. putrefaciens)的微生物燃料电池(MFCs)所示,其最大功率输出比传统的不匹配氮掺杂阳极的MFCs高出21倍。这项工作为快速直接电化学的扩散介导提供了启示,同时为高效、高功率的MFCs带来了希望。