Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
J Colloid Interface Sci. 2023 Sep;645:371-379. doi: 10.1016/j.jcis.2023.04.120. Epub 2023 Apr 26.
The sluggish extracellular electron transfer has been known as one of the bottlenecks to limit the power density of microbial fuel cells (MFCs). Herein, molybdenum oxides (MoO) are doped with various types of non-metal atoms (N, P, and S) by electrostatic adsorption, followed by high-temperature carbonization. The as-prepared material is further used as MFC anode. Results indicate that all different elements-doped anodes can accelerate the electron transfer rate, and the great enhancement mechanism is attributed to synergistic effect of dopped non-metal atoms and the unique MoO nanostructure, which offers high proximity and a large reaction surface area to promote microbe colonization. This not only enables efficient direct electron transfer but also enriches the flavin-like mediators for fast extracellular electron transfer. This work renders new insights into doping non-metal atoms onto metal oxides toward the enhancement of electrode kinetics at the anode of MFC.
电子在细胞外的传递缓慢一直被认为是限制微生物燃料电池 (MFC) 功率密度的瓶颈之一。在此,通过静电吸附将钼氧化物 (MoO) 掺杂入各种类型的非金属原子 (N、P 和 S),然后进行高温碳化。所制备的材料进一步用作 MFC 阳极。结果表明,所有不同元素掺杂的阳极都可以加速电子转移速率,而这种巨大的增强机制归因于掺杂非金属原子和独特的 MoO 纳米结构的协同效应,这提供了高亲和力和大反应表面积,以促进微生物的定植。这不仅可以实现有效的直接电子转移,还可以丰富黄素类介体,以促进快速的细胞外电子转移。这项工作为在 MFC 的阳极上通过掺杂非金属原子来增强电极动力学提供了新的思路。