Suppr超能文献

共生关系走向电气化:直接种间电子传递。

Syntrophy Goes Electric: Direct Interspecies Electron Transfer.

机构信息

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003; email:

出版信息

Annu Rev Microbiol. 2017 Sep 8;71:643-664. doi: 10.1146/annurev-micro-030117-020420. Epub 2017 Jul 11.

Abstract

Direct interspecies electron transfer (DIET) has biogeochemical significance, and practical applications that rely on DIET or DIET-based aspects of microbial physiology are growing. Mechanisms for DIET have primarily been studied in defined cocultures in which Geobacter species are one of the DIET partners. Electrically conductive pili (e-pili) can be an important electrical conduit for DIET. However, there may be instances in which electrical contacts are made between electron transport proteins associated with the outer membranes of the partners. Alternatively, DIET partners can plug into conductive carbon materials, such as granular activated carbon, carbon cloth, and biochar, for long-range electron exchange without the need for e-pili. Magnetite promotes DIET, possibly by acting as a substitute for outer-surface c-type cytochromes. DIET is the primary mode of interspecies electron exchange in some anaerobic digesters converting wastes to methane. Promoting DIET with conductive materials shows promise for stabilizing and accelerating methane production in digesters, permitting higher organic loading rates. Various lines of evidence suggest that DIET is important in terrestrial wetlands, which are an important source of atmospheric methane. DIET may also have a role in anaerobic methane oxidation coupled to sulfate reduction, an important control on methane releases. The finding that DIET can serve as the source of electrons for anaerobic photosynthesis further broadens its potential environmental significance. Microorganisms capable of DIET are good catalysts for several bioelectrochemical technologies and e-pili are a promising renewable source of electronic materials. The study of DIET is in its early stages, and additional investigation is required to better understand the diversity of microorganisms that are capable of DIET, the importance of DIET to carbon and electron flow in anaerobic environments, and the biochemistry and physiology of DIET.

摘要

直接种间电子转移(DIET)具有生物地球化学意义,并且依赖 DIET 或基于微生物生理学的 DIET 方面的实际应用正在增加。DIET 的机制主要在定义明确的共培养物中进行了研究,其中 Geobacter 物种是 DIET 伙伴之一。导电菌毛(e-pili)可以是 DIET 的重要电气导管。但是,在电子传递蛋白与伙伴的外膜相关联的情况下,可能存在电子接触的情况。或者,DIET 伙伴可以插入导电碳材料(例如颗粒活性炭、碳布和生物炭)中,以进行长距离电子交换,而无需 e-pili。磁铁矿促进 DIET,可能是通过充当外表面 c 型细胞色素的替代品。DIET 是将废物转化为甲烷的一些厌氧消化器中种间电子交换的主要模式。使用导电材料促进 DIET 有望稳定和加速消化器中的甲烷生产,允许更高的有机负荷率。各种证据表明,DIET 在陆地湿地中很重要,湿地是大气甲烷的重要来源。DIET 可能在与硫酸盐还原偶联的厌氧甲烷氧化中也具有作用,这是控制甲烷释放的重要因素。发现 DIET 可以作为厌氧光合作用的电子源,进一步扩大了其潜在的环境意义。能够进行 DIET 的微生物是几种生物电化学技术的良好催化剂,并且 e-pili 是有前途的可再生电子材料来源。DIET 的研究处于早期阶段,需要进一步研究以更好地了解能够进行 DIET 的微生物的多样性,DIET 对厌氧环境中碳和电子流动的重要性,以及 DIET 的生物化学和生理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验