文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Habituation of the stress response multiplex to repeated cold pressor exposure.

作者信息

Bullock Tom, MacLean Mary H, Santander Tyler, Boone Alexander P, Babenko Viktoriya, Dundon Neil M, Stuber Alexander, Jimmons Liann, Raymer Jamie, Okafor Gold N, Miller Michael B, Giesbrecht Barry, Grafton Scott T

机构信息

Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.

Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States.

出版信息

Front Physiol. 2023 Jan 10;13:752900. doi: 10.3389/fphys.2022.752900. eCollection 2022.


DOI:10.3389/fphys.2022.752900
PMID:36703933
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9871365/
Abstract

Humans show remarkable habituation to aversive events as reflected by changes of both subjective report and objective measures of stress. Although much experimental human research focuses on the effects of stress, relatively little is known about the cascade of physiological and neural responses that contribute to stress habituation. The cold pressor test (CPT) is a common method for inducing acute stress in human participants in the laboratory; however, there are gaps in our understanding of the global state changes resulting from this stress-induction technique and how these responses change over multiple exposures. Here, we measure the stress response to repeated CPT exposures using an extensive suite of physiologic measures and state-of-the-art analysis techniques. In two separate sessions on different days, participants underwent five 90 s CPT exposures of both feet and five warm water control exposures, while electrocardiography (ECG), impedance cardiography, continuous blood pressure, pupillometry, scalp electroencephalography (EEG), salivary cortisol and self-reported pain assessments were recorded. A diverse array of adaptive responses are reported that vary in their temporal dynamics within each exposure as well as habituation across repeated exposures. During cold-water exposure there was a cascade of changes across several cardiovascular measures (elevated heart rate (HR), cardiac output (CO) and Mean Arterial Pressure (MAP) and reduced left ventricular ejection time (LVET), stroke volume (SV) and high-frequency heart rate variability (HF)). Increased pupil dilation was observed, as was increased power in low-frequency bands (delta and theta) across frontal EEG electrode sites. Several cardiovascular measures also habituated over repeated cold-water exposures (HR, MAP, CO, SV, LVET) as did pupil dilation and alpha frequency activity across the scalp. Anticipation of cold water induced stress effects in the time-period immediately prior to exposure, indexed by increased pupil size and cortical disinhibition in the alpha and beta frequency bands across central scalp sites. These results provide comprehensive insight into the evolution of a diverse array of stress responses to an acute noxious stressor, and how these responses adaptively contribute to stress habituation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/3bae308085e8/fphys-13-752900-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/d798106e968f/fphys-13-752900-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/375a9ea46a3a/fphys-13-752900-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/a886ce0a0c5b/fphys-13-752900-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/1fefef4d62fb/fphys-13-752900-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/18d6e55a0741/fphys-13-752900-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/7a77adfcd0b6/fphys-13-752900-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/9859ceb1f9dc/fphys-13-752900-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/157a47dcc2cb/fphys-13-752900-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/529144b0b14f/fphys-13-752900-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/32a9eb995034/fphys-13-752900-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/bbb8428b3865/fphys-13-752900-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/3bae308085e8/fphys-13-752900-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/d798106e968f/fphys-13-752900-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/375a9ea46a3a/fphys-13-752900-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/a886ce0a0c5b/fphys-13-752900-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/1fefef4d62fb/fphys-13-752900-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/18d6e55a0741/fphys-13-752900-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/7a77adfcd0b6/fphys-13-752900-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/9859ceb1f9dc/fphys-13-752900-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/157a47dcc2cb/fphys-13-752900-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/529144b0b14f/fphys-13-752900-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/32a9eb995034/fphys-13-752900-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/bbb8428b3865/fphys-13-752900-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ed/9871365/3bae308085e8/fphys-13-752900-g012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索