Suppr超能文献

大学生对使用聊天机器人作为自主学习工具的满意度认知。

Perceived satisfaction of university students with the use of chatbots as a tool for self-regulated learning.

作者信息

Sáiz-Manzanares María Consuelo, Marticorena-Sánchez Raúl, Martín-Antón Luis Jorge, González Díez Irene, Almeida Leandro

机构信息

Universidad de Burgos. Facultad de Ciencias de la Salud. Departamento de Ciencias de la Salud, Burgos, Spain.

Grupo de Investigación: DATAHES, Unidad de Investigación Consolidada de la Junta de Castilla y León Nº 348: EHPAIT, Spain.

出版信息

Heliyon. 2023 Jan 13;9(1):e12843. doi: 10.1016/j.heliyon.2023.e12843. eCollection 2023 Jan.

Abstract

Chatbots are a promising resource for giving students feedback and helping them deploy metacognitive strategies in their learning processes. In this study we worked with a sample of 57 university students, 42 undergraduate and 15 Master's degree students in Health Sciences. A mixed research methodology was applied. The quantitative study analysed the influence of the variables educational level (undergraduate vs. master's degree) and level of prior knowledge on the frequency of chatbot use (low vs. average), learning outcomes, and satisfaction with the chatbot's usefulness. In addition, we examined whether the frequency of chatbot use depended on students' metacognitive strategies. The qualitative study analysed the students' suggestions for improvement to the chatbot and the type of questions it used. The results indicated that the level of degree being studied influenced the frequency of chatbot use and learning outcomes, with Master's students exhibiting higher levels of both, but levels of prior knowledge only influenced learning outcomes. Significant differences were also found in students' perceived satisfaction with the use of the chatbot, with Master's students scoring higher, but not with respect to the level of prior knowledge. No conclusive results were found regarding frequency of chatbot use and the levels of students' metacognitive strategies. Further studies are needed to guide this research based on the students' suggestions for improvement.

摘要

聊天机器人是一种很有前景的资源,可用于为学生提供反馈,并帮助他们在学习过程中运用元认知策略。在本研究中,我们对57名大学生进行了抽样调查,其中42名是健康科学专业的本科生,15名是硕士研究生。我们采用了混合研究方法。定量研究分析了教育水平(本科与硕士)和先验知识水平这两个变量对聊天机器人使用频率(低与平均)、学习成果以及对聊天机器人有用性的满意度的影响。此外,我们还研究了聊天机器人的使用频率是否取决于学生的元认知策略。定性研究分析了学生对聊天机器人改进的建议以及它所使用的问题类型。结果表明,所攻读的学位水平影响了聊天机器人的使用频率和学习成果,硕士研究生在这两方面的水平都更高,但先验知识水平仅影响学习成果。在学生对聊天机器人使用的感知满意度方面也发现了显著差异,硕士研究生得分更高,但在先验知识水平方面没有差异。关于聊天机器人的使用频率与学生元认知策略水平之间,未得出确凿结果。需要进一步的研究,以根据学生的改进建议来指导这项研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e66c/9871218/4d1e969d6f4c/gr1.jpg

相似文献

1
Perceived satisfaction of university students with the use of chatbots as a tool for self-regulated learning.
Heliyon. 2023 Jan 13;9(1):e12843. doi: 10.1016/j.heliyon.2023.e12843. eCollection 2023 Jan.
2
Implementing the Bashayer chatbot in Saudi higher education: measuring the influence on students' motivation and learning strategies.
Front Psychol. 2023 May 15;14:1129070. doi: 10.3389/fpsyg.2023.1129070. eCollection 2023.
7
The implementation of chatbot-mediated immediacy for synchronous communication in an online chemistry course.
Educ Inf Technol (Dordr). 2023 Feb 3:1-26. doi: 10.1007/s10639-023-11602-1.
8
Students' Perceptions on Chatbots' Potential and Design Characteristics in Healthcare Education.
Stud Health Technol Inform. 2020 Jun 26;272:209-212. doi: 10.3233/SHTI200531.

引用本文的文献

4
Developing self-regulated learning as a pedagogy in higher education: An institutional survey and case study in Hong Kong.
Heliyon. 2023 Nov 10;9(11):e22115. doi: 10.1016/j.heliyon.2023.e22115. eCollection 2023 Nov.
5
Exploring chatbot trust: Antecedents and behavioural outcomes.
Heliyon. 2023 May 6;9(5):e16074. doi: 10.1016/j.heliyon.2023.e16074. eCollection 2023 May.

本文引用的文献

1
Using chatbots to support student goal setting and social presence in fully online activities: learner engagement and perceptions.
J Comput High Educ. 2023;35(1):40-68. doi: 10.1007/s12528-022-09338-x. Epub 2022 Sep 9.
2
Health-focused conversational agents in person-centered care: a review of apps.
NPJ Digit Med. 2022 Feb 17;5(1):21. doi: 10.1038/s41746-022-00560-6.
3
Improve teaching with modalities and collaborative groups in an LMS: an analysis of monitoring using visualisation techniques.
J Comput High Educ. 2021;33(3):747-778. doi: 10.1007/s12528-021-09289-9. Epub 2021 Jul 13.
4
Can intelligent agents improve data quality in online questiosnnaires? A pilot study.
Behav Res Methods. 2021 Oct;53(5):2238-2251. doi: 10.3758/s13428-021-01574-w. Epub 2021 Apr 5.
5
Effectiveness of Using Voice Assistants in Learning: A Study at the Time of COVID-19.
Int J Environ Res Public Health. 2020 Aug 4;17(15):5618. doi: 10.3390/ijerph17155618.
6
Students' Perceptions on Chatbots' Potential and Design Characteristics in Healthcare Education.
Stud Health Technol Inform. 2020 Jun 26;272:209-212. doi: 10.3233/SHTI200531.
7
A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents.
Comput Intell Neurosci. 2016;2016:8402127. doi: 10.1155/2016/8402127. Epub 2015 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验