Int J Comput Dent. 2023 Nov 28;26(4):301-309. doi: 10.3290/j.ijcd.b3840535.
AIM: To develop a deep learning (DL) artificial intelligence (AI) model for instance segmentation and tooth numbering on orthopantomograms (OPGs). MATERIALS AND METHODS: Forty OPGs were manually annotated to lay down the ground truth for training two convolutional neural networks (CNNs): U-net and Faster RCNN. These algorithms were concurrently trained and validated on a dataset of 1280 teeth (40 OPGs) each. The U-net algorithm was trained on OPGs specifically annotated with polygons to label all 32 teeth via instance segmentation, allowing each tooth to be denoted as a separate entity from the surrounding structures. Simultaneously, teeth were also numbered according to the Fédération Dentaire Internationale (FDI) numbering system, using bounding boxes to train Faster RCNN. Consequently, both trained CNNs were combined to develop an AI model capable of segmenting and numbering all teeth on an OPG. RESULTS: The performance of the U-net algorithm was determined using various performance metrics including precision = 88.8%, accuracy = 88.2%, recall = 87.3%, F-1 score = 88%, dice index = 92.3%, and Intersection over Union (IoU) = 86.3%. The performance metrics of the Faster RCNN algorithm were determined using overlap accuracy = 30.2 bounding boxes (out of a possible of 32 boxes) and classifier accuracy of labels = 93.8%. CONCLUSIONS: The instance segmentation and tooth numbering results of our trained AI model were close to the ground truth, indicating a promising future for their incorporation into clinical dental practice. The ability of an AI model to automatically identify teeth on OPGs will aid dentists with diagnosis and treatment planning, thus increasing efficiency.
目的:开发一种深度学习(DL)人工智能(AI)模型,用于对全景片(OPG)进行实例分割和牙齿编号。
材料和方法:对 40 张 OPG 进行手动标注,为训练两个卷积神经网络(CNN):U-net 和 Faster RCNN 奠定了真实数据的基础。这两个算法同时在一个包含 1280 颗牙齿(40 张 OPG)的数据集上进行训练和验证。U-net 算法是在专门用多边形标注的 OPG 上进行训练的,通过实例分割标记所有 32 颗牙齿,使每颗牙齿都可以与周围结构区分开来。同时,也根据国际牙科联合会(FDI)编号系统使用边界框对牙齿进行编号,使用 Faster RCNN 进行训练。因此,将两个训练有素的 CNN 结合起来,开发出一种能够对 OPG 上的所有牙齿进行分割和编号的 AI 模型。
结果:使用各种性能指标(包括精度=88.8%、准确度=88.2%、召回率=87.3%、F1 分数=88%、骰子指数=92.3%和交并比(IoU)=86.3%)来确定 U-net 算法的性能。使用重叠精度=30.2 个边界框(32 个框中的 30.2 个)和分类器标签准确率=93.8%来确定 Faster RCNN 算法的性能指标。
结论:我们训练的 AI 模型的实例分割和牙齿编号结果接近真实数据,这表明它们在临床牙科实践中的应用前景广阔。AI 模型自动识别 OPG 上的牙齿的能力将有助于牙医进行诊断和治疗计划,从而提高效率。
Int J Comput Dent. 2023-11-28
Dentomaxillofac Radiol. 2022-2-1
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-7
Clin Oral Investig. 2021-4
Clin Oral Investig. 2024-2-27
BMC Oral Health. 2024-3-26
J Pak Med Assoc. 2024-4
Dentomaxillofac Radiol. 2019-3-5
Clin Oral Investig. 2025-1-31
Clin Implant Dent Relat Res. 2025-2
Data Brief. 2024-11-23
J Clin Exp Dent. 2024-5-1