Suppr超能文献

基于人工智能的深度学习模型在口腔内图像龋齿检测中的应用——一项系统综述。

Applications of AI-based deep learning models for detecting dental caries on intraoral images - a systematic review.

作者信息

Noor Uddin Ayesha, Ali Syed Ahmed, Lal Abhishek, Adnan Niha, Ahmed Syed Muhammad Faizan, Umer Fahad

机构信息

Section of Dentistry, Department of Surgery, The Aga Khan University, Karachi, Pakistan.

Section of Gastroenterology, Department of Medicine. The Aga Khan University, Karachi, Pakistan.

出版信息

Evid Based Dent. 2025 Mar;26(1):71-72. doi: 10.1038/s41432-024-01089-1. Epub 2024 Nov 28.

Abstract

OBJECTIVES

This systematic review aimed to assess the effectiveness of Artificial Intelligence (AI)-based Deep Learning (DL) models in the detection of dental caries on intraoral images.

METHODS

This systematic review adhered to PRISMA 2020 guidelines conducting an electronic search on PubMed, Scopus, and CENTRAL databases for retrospective, prospective, and cross-sectional studies published till 1st June 2024. Methodological and performance metrics of clinical studies utilizing DL models were assessed. A modified QUADAS risk of bias tool was used for quality assessment.

RESULTS

Out of 273 studies identified, a total of 23 were included with 19 studies having a low risk and 4 studies having a high risk of bias. Overall accuracy ranged from 56% to 99.1%, sensitivity ranged from 23% to 98% and specificity ranged from 65.7% to 100%. Only 3 studies utilized explainable AI (XAI) techniques for caries detection. A total of 4 studies exhibited a level 4 deployment status by developing mobile or web-based applications.

CONCLUSION

AI-based DL models have demonstrated promising prospects in enhancing the detection of dental caries, especially in terms of low-resource settings. However, there is a need for future deployed studies to enhance the AI models to improve their real-world applications.

摘要

目的

本系统评价旨在评估基于人工智能(AI)的深度学习(DL)模型在口腔内图像龋齿检测中的有效性。

方法

本系统评价遵循PRISMA 2020指南,在PubMed、Scopus和CENTRAL数据库中进行电子检索,以查找截至2024年6月1日发表的回顾性、前瞻性和横断面研究。评估了使用DL模型的临床研究的方法学和性能指标。使用改良的QUADAS偏倚风险工具进行质量评估。

结果

在检索到的273项研究中,共纳入23项研究,其中19项研究偏倚风险低,4项研究偏倚风险高。总体准确率在56%至99.1%之间,敏感性在23%至98%之间,特异性在65.7%至100%之间。只有3项研究使用可解释人工智能(XAI)技术进行龋齿检测。共有4项研究通过开发移动或基于网络的应用程序展示了4级部署状态。

结论

基于AI的DL模型在增强龋齿检测方面已展现出广阔前景,尤其是在资源匮乏的环境中。然而,未来需要开展更多部署研究来改进AI模型,以提升其在现实世界中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验