Suppr超能文献

全景牙片牙齿分割与编号数据集。

Orthopantomogram teeth segmentation and numbering dataset.

作者信息

Adnan Niha, Umer Fahad

机构信息

Section of Operative Dentistry and Endodontics, Department of Surgery, Jenabai Hussainali Shariff (JHS) building, First Floor Dental clinics, Aga Khan University Hospital, Stadium Road, Karachi 74800, Pakistan.

出版信息

Data Brief. 2024 Nov 23;57:111152. doi: 10.1016/j.dib.2024.111152. eCollection 2024 Dec.

Abstract

With the digitization of radiographs, vast amounts of data have become accessible, enabling the curation and development of extensive datasets. Among radiographic modalities, Orthopantomograms (OPGs) are widely utilized in clinical practice. The integration of automated diagnostic processes into routine clinical practice holds great potential as an adjunct for dentists.Various OPG datasets exist, however their limitations affect the robustness of Artificial Intelligence (AI) models trained on them. This paper introduces an OPG dataset specifically designed for training AI algorithms in teeth segmentation and numbering tasks. A key feature of this dataset is its dual annotation, which allows for individual tooth segmentation by class, as well as numbering according to the Fédération Dentaire Internationale system.This dual-annotated dataset enhances the existing pool of OPG datasets and can be leveraged for further training of pre-trained algorithms or the development of new ones. Moreover, it offers researchers to carry out annotations tailored to their respective research objectives, thereby facilitating the development of AI models capable of addressing diverse diagnostic tasks.

摘要

随着X光片的数字化,大量数据变得可获取,这使得大规模数据集的管理和开发成为可能。在X光成像模态中,全景曲面断层片(OPG)在临床实践中被广泛应用。将自动化诊断流程整合到常规临床实践中,作为牙医的辅助手段具有巨大潜力。虽然存在各种OPG数据集,但其局限性影响了基于这些数据集训练的人工智能(AI)模型的稳健性。本文介绍了一个专门为牙齿分割和编号任务训练AI算法而设计的OPG数据集。该数据集的一个关键特性是其双重标注,它允许按类别对单个牙齿进行分割,并根据国际牙科联合会系统进行编号。这个双重标注的数据集丰富了现有的OPG数据集池,可用于进一步训练预训练算法或开发新算法。此外,它为研究人员提供了根据各自研究目标进行标注的机会,从而有助于开发能够处理各种诊断任务的AI模型。

相似文献

1
Orthopantomogram teeth segmentation and numbering dataset.全景牙片牙齿分割与编号数据集。
Data Brief. 2024 Nov 23;57:111152. doi: 10.1016/j.dib.2024.111152. eCollection 2024 Dec.
7
Automatic feature segmentation in dental panoramic radiographs.口腔全景 X 光片的自动特征分割。
Sci Prog. 2024 Oct-Dec;107(4):368504241286659. doi: 10.1177/00368504241286659.

本文引用的文献

1
Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs.多模态深度学习方法在全景片中牙齿和根尖病变的分割。
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Jul;138(1):196-204. doi: 10.1016/j.oooo.2023.11.006. Epub 2023 Nov 26.
5
Understanding deep learning - challenges and prospects.理解深度学习——挑战与展望。
J Pak Med Assoc. 2022 Feb;72(Suppl 1)(2):S59-S63. doi: 10.47391/JPMA.AKU-12.
6
Application of deep learning in teeth identification tasks on panoramic radiographs.深度学习在全景片牙齿识别任务中的应用。
Dentomaxillofac Radiol. 2022 Jul 1;51(5):20210504. doi: 10.1259/dmfr.20210504. Epub 2022 Mar 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验