Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Postal Number 590, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands.
Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
BMC Oral Health. 2024 Mar 26;24(1):387. doi: 10.1186/s12903-024-04129-5.
OBJECTIVE: Panoramic radiographs (PRs) provide a comprehensive view of the oral and maxillofacial region and are used routinely to assess dental and osseous pathologies. Artificial intelligence (AI) can be used to improve the diagnostic accuracy of PRs compared to bitewings and periapical radiographs. This study aimed to evaluate the advantages and challenges of using publicly available datasets in dental AI research, focusing on solving the novel task of predicting tooth segmentations, FDI numbers, and tooth diagnoses, simultaneously. MATERIALS AND METHODS: Datasets from the OdontoAI platform (tooth instance segmentations) and the DENTEX challenge (tooth bounding boxes with associated diagnoses) were combined to develop a two-stage AI model. The first stage implemented tooth instance segmentation with FDI numbering and extracted regions of interest around each tooth segmentation, whereafter the second stage implemented multi-label classification to detect dental caries, impacted teeth, and periapical lesions in PRs. The performance of the automated tooth segmentation algorithm was evaluated using a free-response receiver-operating-characteristics (FROC) curve and mean average precision (mAP) metrics. The diagnostic accuracy of detection and classification of dental pathology was evaluated with ROC curves and F1 and AUC metrics. RESULTS: The two-stage AI model achieved high accuracy in tooth segmentations with a FROC score of 0.988 and a mAP of 0.848. High accuracy was also achieved in the diagnostic classification of impacted teeth (F1 = 0.901, AUC = 0.996), whereas moderate accuracy was achieved in the diagnostic classification of deep caries (F1 = 0.683, AUC = 0.960), early caries (F1 = 0.662, AUC = 0.881), and periapical lesions (F1 = 0.603, AUC = 0.974). The model's performance correlated positively with the quality of annotations in the used public datasets. Selected samples from the DENTEX dataset revealed cases of missing (false-negative) and incorrect (false-positive) diagnoses, which negatively influenced the performance of the AI model. CONCLUSIONS: The use and pooling of public datasets in dental AI research can significantly accelerate the development of new AI models and enable fast exploration of novel tasks. However, standardized quality assurance is essential before using the datasets to ensure reliable outcomes and limit potential biases.
目的:全景片(PR)提供了口腔颌面区域的全面视图,常用于评估牙齿和骨骼病变。人工智能(AI)可用于提高 PR 相对于咬翼片和根尖片的诊断准确性。本研究旨在评估在牙科 AI 研究中使用公开数据集的优势和挑战,重点是解决同时预测牙齿分割、FDI 编号和牙齿诊断的新任务。
材料和方法:整合了 OdontoAI 平台(牙齿实例分割)和 DENTEX 挑战赛(带相关诊断的牙齿边界框)的数据集,开发了一个两阶段 AI 模型。第一阶段实现了带有 FDI 编号的牙齿实例分割,并提取了每个牙齿分割周围的感兴趣区域,然后第二阶段实现了多标签分类,以在 PR 中检测龋齿、阻生牙和根尖病变。使用自由响应接收者操作特征(FROC)曲线和平均精度(mAP)指标评估自动牙齿分割算法的性能。使用 ROC 曲线和 F1 和 AUC 指标评估牙科病理检测和分类的诊断准确性。
结果:两阶段 AI 模型在牙齿分割方面取得了很高的准确性,FROC 得分为 0.988,mAP 为 0.848。在阻生牙的诊断分类方面也取得了很高的准确性(F1=0.901,AUC=0.996),而在深龋(F1=0.683,AUC=0.960)、早期龋(F1=0.662,AUC=0.881)和根尖病变(F1=0.603,AUC=0.974)的诊断分类方面则取得了中等准确性。模型的性能与使用的公共数据集的注释质量呈正相关。从 DENTEX 数据集选择的样本显示存在缺失(假阴性)和错误(假阳性)诊断的情况,这对 AI 模型的性能产生了负面影响。
结论:在牙科 AI 研究中使用和汇集公共数据集可以显著加快新 AI 模型的开发,并能够快速探索新任务。然而,在使用数据集之前,必须进行标准化的质量保证,以确保可靠的结果并限制潜在的偏差。
BMC Oral Health. 2024-3-26
BMC Oral Health. 2022-11-9
Int J Comput Dent. 2023-11-28
Biomed Res Int. 2022
Clin Oral Investig. 2021-4
Dentomaxillofac Radiol. 2021-9-1
Diagnostics (Basel). 2023-1-5
Dentomaxillofac Radiol. 2022-9-1
Int J Oral Sci. 2022-3-31