Suppr超能文献

雷尼熵-复杂度因果关系空间:一种用于检测脑电图/颅内脑电图数据中无标度特征的新型神经计算工具。

Rényi entropy-complexity causality space: a novel neurocomputational tool for detecting scale-free features in EEG/iEEG data.

作者信息

Guisande Natalí, Montani Fernando

机构信息

Instituto de Física de La Plata (IFLP), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de La Plata (CONICET-UNLP), La Plata, Buenos Aires, Argentina.

出版信息

Front Comput Neurosci. 2024 Jul 15;18:1342985. doi: 10.3389/fncom.2024.1342985. eCollection 2024.

Abstract

Scale-free brain activity, linked with learning, the integration of different time scales, and the formation of mental models, is correlated with a metastable cognitive basis. The spectral slope, a key aspect of scale-free dynamics, was proposed as a potential indicator to distinguish between different sleep stages. Studies suggest that brain networks maintain a consistent scale-free structure across wakefulness, anesthesia, and recovery. Although differences in anesthetic sensitivity between the sexes are recognized, these variations are not evident in clinical electroencephalographic recordings of the cortex. Recently, changes in the slope of the power law exponent of neural activity were found to correlate with changes in Rényi entropy, an extended concept of Shannon's information entropy. These findings establish quantifiers as a promising tool for the study of scale-free dynamics in the brain. Our study presents a novel visual representation called the Rényi entropy-complexity causality space, which encapsulates complexity, permutation entropy, and the Rényi parameter q. The main goal of this study is to define this space for classical dynamical systems within theoretical bounds. In addition, the study aims to investigate how well different time series mimicking scale-free activity can be discriminated. Finally, this tool is used to detect dynamic features in intracranial electroencephalography (iEEG) signals. To achieve these goals, the study implementse the Bandt and Pompe method for ordinal patterns. In this process, each signal is associated with a probability distribution, and the causal measures of Rényi entropy and complexity are computed based on the parameter q. This method is a valuable tool for analyzing simulated time series. It effectively distinguishes elements of correlated noise and provides a straightforward means of examining differences in behaviors, characteristics, and classifications. For the iEEG experimental data, the REM state showed a greater number of significant sex-based differences, while the supramarginal gyrus region showed the most variation across different modes and analyzes. Exploring scale-free brain activity with this framework could provide valuable insights into cognition and neurological disorders. The results may have implications for understanding differences in brain function between the sexes and their possible relevance to neurological disorders.

摘要

与学习、不同时间尺度的整合以及心理模型的形成相关的无标度脑活动与亚稳态认知基础相关。谱斜率作为无标度动力学的一个关键方面,被提议作为区分不同睡眠阶段的潜在指标。研究表明,脑网络在清醒、麻醉和恢复过程中保持一致的无标度结构。尽管认识到两性在麻醉敏感性上存在差异,但这些差异在皮质的临床脑电图记录中并不明显。最近,发现神经活动的幂律指数斜率变化与雷尼熵(香农信息熵的扩展概念)的变化相关联。这些发现确立了量化指标作为研究大脑无标度动力学的一种有前景的工具。我们的研究提出了一种名为雷尼熵 - 复杂性因果关系空间的新颖可视化表示,它包含了复杂性、排列熵和雷尼参数q。本研究的主要目标是在理论范围内为经典动力系统定义这个空间。此外,该研究旨在探究不同模拟无标度活动的时间序列能够被区分的程度。最后,这个工具被用于检测颅内脑电图(iEEG)信号中的动态特征。为实现这些目标,该研究实施了用于有序模式的班特和庞贝方法。在此过程中,每个信号都与一个概率分布相关联,并基于参数q计算雷尼熵和复杂性的因果度量。这种方法是分析模拟时间序列的一种有价值的工具。它能有效区分相关噪声的元素,并提供一种直接的方式来检查行为、特征和分类上的差异。对于iEEG实验数据,快速眼动(REM)状态显示出更多基于性别的显著差异,而缘上回区域在不同模式和分析中表现出最大的变化。用这个框架探索无标度脑活动可以为认知和神经疾病提供有价值的见解。这些结果可能对理解两性之间脑功能的差异及其与神经疾病的可能关联具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4d/11287776/c17e475782fb/fncom-18-1342985-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验