Suppr超能文献

跨供应商、跨示踪剂和跨协议的心脏 SPECT 衰减图生成的深度迁移学习。

Cross-vender, cross-tracer, and cross-protocol deep transfer learning for attenuation map generation of cardiac SPECT.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.

出版信息

J Nucl Cardiol. 2022 Dec;29(6):3379-3391. doi: 10.1007/s12350-022-02978-7. Epub 2022 Apr 26.

Abstract

It has been proved feasible to generate attenuation maps (μ-maps) from cardiac SPECT using deep learning. However, this assumed that the training and testing datasets were acquired using the same scanner, tracer, and protocol. We investigated a robust generation of CT-derived μ-maps from cardiac SPECT acquired by different scanners, tracers, and protocols from the training data. We first pre-trained a network using 120 studies injected with Tc-tetrofosmin acquired from a GE 850 SPECT/CT with 360-degree gantry rotation, which was then fine-tuned and tested using 80 studies injected with Tc-sestamibi acquired from a Philips BrightView SPECT/CT with 180-degree gantry rotation. The error between ground-truth and predicted μ-maps by transfer learning was 5.13 ± 7.02%, as compared to 8.24 ± 5.01% by direct transition without fine-tuning and 6.45 ± 5.75% by limited-sample training. The error between ground-truth and reconstructed images with predicted μ-maps by transfer learning was 1.11 ± 1.57%, as compared to 1.72 ± 1.63% by direct transition and 1.68 ± 1.21% by limited-sample training. It is feasible to apply a network pre-trained by a large amount of data from one scanner to data acquired by another scanner using different tracers and protocols, with proper transfer learning.

摘要

已经证明,使用深度学习从心脏 SPECT 生成衰减图(μ 图)是可行的。然而,这假设训练和测试数据集是使用相同的扫描仪、示踪剂和协议获得的。我们研究了从训练数据中使用不同的扫描仪、示踪剂和协议从心脏 SPECT 生成 CT 衍生的μ 图的稳健方法。我们首先使用从配备 360 度机架旋转的 GE 850 SPECT/CT 注射 Tc-tetrofosmin 的 120 项研究来预训练网络,然后使用从配备 180 度机架旋转的 Philips BrightView SPECT/CT 注射 Tc-sestamibi 的 80 项研究来微调并测试该网络。通过迁移学习,预测μ图与真实μ图之间的误差为 5.13 ± 7.02%,而直接过渡未经微调的误差为 8.24 ± 5.01%,有限样本训练的误差为 6.45 ± 5.75%。通过迁移学习,预测μ图与真实μ图之间的重建图像的误差为 1.11 ± 1.57%,而直接过渡的误差为 1.72 ± 1.63%,有限样本训练的误差为 1.68 ± 1.21%。使用来自一台扫描仪的大量数据预先训练的网络,通过适当的迁移学习,可以应用于使用不同示踪剂和协议获得的另一台扫描仪的数据。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验