Suppr超能文献

CFPNet-M:一种基于编解码器的轻量级网络,用于多模态生物医学图像实时分割。

CFPNet-M: A light-weight encoder-decoder based network for multimodal biomedical image real-time segmentation.

机构信息

Biomedical Engineering Department, George Washington University, Washington, DC, 20052, USA.

出版信息

Comput Biol Med. 2023 Mar;154:106579. doi: 10.1016/j.compbiomed.2023.106579. Epub 2023 Jan 24.

Abstract

-Deep learning techniques are proving instrumental in identifying, classifying, and quantifying patterns in medical images. Segmentation is one of the important applications in medical image analysis. The U-Net has become the predominant deep-learning approach to medical image segmentation tasks. Existing U-Net based models have limitations in several respects, however, including: the requirement for millions of parameters in the U-Net, which consumes considerable computational resources and memory; the lack of global information; and incomplete segmentation in difficult cases. To remove some of those limitations, we built on our previous work and applied two modifications to improve the U-Net model: 1) we designed and added the dilated channel-wise CNN module and 2) we simplified the U-shape network. We then proposed a novel light-weight architecture, the Channel-wise Feature Pyramid Network for Medicine (CFPNet-M). To evaluate our method, we selected five datasets from different imaging modalities: thermography, electron microscopy, endoscopy, dermoscopy, and digital retinal images. We compared its performance with several models having a variety of complexities. We used the Tanimoto similarity instead of the Jaccard index for gray-level image comparisons. The CFPNet-M achieves segmentation results on all five medical datasets that are comparable to existing methods, yet require only 8.8 MB memory, and just 0.65 million parameters, which is about 2% of U-Net. Unlike other deep-learning segmentation methods, this new approach is suitable for real-time application: its inference speed can reach 80 frames per second when implemented on a single RTX 2070Ti GPU with an input image size of 256 × 192 pixels.

摘要

深度学习技术在识别、分类和量化医学图像中的模式方面表现出色。分割是医学图像分析中的一个重要应用。U-Net 已成为医学图像分割任务中主要的深度学习方法。然而,现有的基于 U-Net 的模型在几个方面存在局限性,包括:U-Net 需要数百万个参数,这消耗了大量的计算资源和内存;缺乏全局信息;以及在困难情况下的不完全分割。为了消除其中的一些限制,我们基于之前的工作,应用了两种改进来改进 U-Net 模型:1)设计并添加了扩张通道卷积神经网络模块;2)简化了 U 型网络。然后,我们提出了一种新颖的轻量级架构,即医学通道特征金字塔网络(CFPNet-M)。为了评估我们的方法,我们从不同的成像模式中选择了五个数据集:热成像、电子显微镜、内窥镜、皮肤镜和数字视网膜图像。我们将其性能与具有各种复杂度的几个模型进行了比较。我们使用 Tanimoto 相似性而不是 Jaccard 指数来进行灰度图像比较。CFPNet-M 在所有五个医学数据集上的分割结果与现有方法相当,但仅需要 8.8MB 内存和 65 万个参数,这大约是 U-Net 的 2%。与其他深度学习分割方法不同,这种新方法适用于实时应用:当在单个 RTX 2070Ti GPU 上实现,输入图像大小为 256×192 像素时,其推断速度可以达到 80 帧/秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验