文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images.

作者信息

Huang Zhi, Shao Wei, Han Zhi, Alkashash Ahmad Mahmoud, De la Sancha Carlo, Parwani Anil V, Nitta Hiroaki, Hou Yanjun, Wang Tongxin, Salama Paul, Rizkalla Maher, Zhang Jie, Huang Kun, Li Zaibo

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Department of Electrical and Computer Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA.

出版信息

NPJ Precis Oncol. 2023 Jan 27;7(1):14. doi: 10.1038/s41698-023-00352-5.


DOI:10.1038/s41698-023-00352-5
PMID:36707660
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9883475/
Abstract

Advances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task, limited by the poor understanding of tumor immune micro-environments. In this study, an automatic, accurate, comprehensive, interpretable, and reproducible whole slide image (WSI) feature extraction pipeline known as, IMage-based Pathological REgistration and Segmentation Statistics (IMPRESS), is described. We used both H&E and multiplex IHC (PD-L1, CD8+, and CD163+) images, investigated whether artificial intelligence (AI)-based algorithms using automatic feature extraction methods can predict neoadjuvant chemotherapy (NAC) outcomes in HER2-positive (HER2+) and triple-negative breast cancer (TNBC) patients. Features are derived from tumor immune micro-environment and clinical data and used to train machine learning models to accurately predict the response to NAC in breast cancer patients (HER2+ AUC = 0.8975; TNBC AUC = 0.7674). The results demonstrate that this method outperforms the results trained from features that were manually generated by pathologists. The developed image features and algorithms were further externally validated by independent cohorts, yielding encouraging results, especially for the HER2+ subtype.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/0e2afcdf96ae/41698_2023_352_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/21a9d345db34/41698_2023_352_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/01f4baee9015/41698_2023_352_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/d0c6a22567f0/41698_2023_352_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/a69c5e15b33b/41698_2023_352_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/0e2afcdf96ae/41698_2023_352_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/21a9d345db34/41698_2023_352_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/01f4baee9015/41698_2023_352_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/d0c6a22567f0/41698_2023_352_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/a69c5e15b33b/41698_2023_352_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/9883475/0e2afcdf96ae/41698_2023_352_Fig5_HTML.jpg

相似文献

[1]
Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images.

NPJ Precis Oncol. 2023-1-27

[2]
Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer.

Res Sq. 2023-8-18

[3]
Deep learning with biopsy whole slide images for pretreatment prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer:A multicenter study.

Breast. 2022-12

[4]
Predicting Neoadjuvant Treatment Response in Triple-Negative Breast Cancer Using Machine Learning.

Diagnostics (Basel). 2023-12-28

[5]
Deep learning-based predictive model for pathological complete response to neoadjuvant chemotherapy in breast cancer from biopsy pathological images: a multicenter study.

Front Physiol. 2024-1-31

[6]
Whole slide image features predict pathologic complete response and poor clinical outcomes in triple-negative breast cancer.

Pathol Res Pract. 2023-6

[7]
Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study.

EClinicalMedicine. 2022-7-30

[8]
Predicting neoadjuvant treatment response in triple-negative breast cancer using machine learning.

bioRxiv. 2023-4-20

[9]
Accuracy of morphologic change measurements by ultrasound in predicting pathological response to neoadjuvant chemotherapy in triple-negative and HER2-positive breast cancer.

Breast Cancer. 2021-7

[10]
Analysis of tumor nuclear features using artificial intelligence to predict response to neoadjuvant chemotherapy in high-risk breast cancer patients.

Breast Cancer Res Treat. 2021-4

引用本文的文献

[1]
Artificial intelligence as treatment support in breast cancer: current perspectives.

Breast. 2025-8-22

[2]
HistoChat: Instruction-tuning multimodal vision language assistant for colorectal histopathology on limited data.

Patterns (N Y). 2025-5-30

[3]
Predicting Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer Using Pre-Treatment Histopathologic Images.

Cancers (Basel). 2025-7-22

[4]
Artificial Intelligence-Based Pathology to Assist Prediction of Neoadjuvant Therapy Responses for Breast Cancer.

Cancer Med. 2025-8

[5]
Synergistic H&E and IHC image analysis by AI predicts cancer biomarkers and survival outcomes in colorectal and breast cancer.

Commun Med (Lond). 2025-8-1

[6]
Predicting Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer Using Pre-Treatment Histopathologic Images.

ArXiv. 2025-7-26

[7]
AI-powered prediction model for neoadjuvant chemotherapy efficacy: comprehensive analysis of breast cancer histological images.

NPJ Precis Oncol. 2025-7-15

[8]
A visual-omics foundation model to bridge histopathology with spatial transcriptomics.

Nat Methods. 2025-5-29

[9]
A visual-omics foundation model to bridge histopathology image with transcriptomics.

Res Sq. 2025-4-16

[10]
Transfer learning drives automatic HER2 scoring on HE-stained WSIs for breast cancer: a multi-cohort study.

Breast Cancer Res. 2025-4-23

本文引用的文献

[1]
AI predicts cancer relapse from slides.

Nat Biotechnol. 2022-10

[2]
Multistep, automatic and nonrigid image registration method for histology samples acquired using multiple stains.

Phys Med Biol. 2021-1-26

[3]
Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma.

Nat Commun. 2020-4-14

[4]
ANHIR: Automatic Non-Rigid Histological Image Registration Challenge.

IEEE Trans Med Imaging. 2020-10

[5]
Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method.

Thorac Cancer. 2020-3

[6]
Computational Staining of Pathology Images to Study the Tumor Microenvironment in Lung Cancer.

Cancer Res. 2020-1-8

[7]
PD-L1 status in breast cancer: Current view and perspectives.

Semin Cancer Biol. 2021-7

[8]
Clinicopathologic Factors Associated With Response to Neoadjuvant Anti-HER2-Directed Chemotherapy in HER2-Positive Breast Cancer.

Clin Breast Cancer. 2020-2

[9]
Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.

Nat Rev Clin Oncol. 2019-8-9

[10]
A Nomogram to Predict the Pathologic Complete Response of Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Based on Simple Laboratory Indicators.

Ann Surg Oncol. 2019-7-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索