School of Mathematical Sciences, Zhejiang University, Hangzhou, China.
Department of Ultrasound, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Comput Biol Med. 2023 Mar;154:106536. doi: 10.1016/j.compbiomed.2023.106536. Epub 2023 Jan 12.
Convolutional Neural Networks (CNNs) for medical image analysis usually only output a probability value, providing no further information about the original image or inter-relationships between different images. Dimensionality Reduction Techniques (DRTs) are used for visualization of high dimensional medical image data, but they are not intended for discriminative classification analysis.
We develop an interactive phenotype distribution field visualization system for medical images to accurately reflect the pathological characteristics of lesions and their similarity to assist radiologists in diagnosis and medical research.
We propose a novel method, Classification Regularized Uniform Manifold Approximation and Projection (UMAP) referred as CReUMAP, combining the advantages of CNN and DRT, to project the extracted feature vector fused with the malignant probability predicted by a CNN to a two-dimensional space, and then apply a spatial segmentation classifier trained on 2614 ultrasound images for prediction of thyroid nodule malignancy and guidance to radiologists.
The CReUMAP embedding correlates well with the TI-RADS categories of thyroid nodules. The parametric version that embeds external test dataset of 303 images in presence of the training data with known pathological diagnosis improves the benign and malignant nodule diagnostic accuracy (p-value = 0.016) and confidence (p-value = 1.902 × 10) of eight radiologists of different experience levels significantly as well as their inter-observer agreements (kappa≥0.75). CReUMAP achieve 90.8% accuracy, 92.1% sensitivity and 88.6% specificity in test set.
CReUMAP embedding is well correlated with the pathological diagnosis of thyroid nodules, and helps radiologists achieve more accurate, confident and consistent diagnosis. It allows a medical center to generate its locally adapted embedding using an already-trained classification model in an updateable manner on an ever-growing local database as long as the extracted feature vectors and predicted diagnostic probabilities of the correspondent classification model can be outputted.
用于医学图像分析的卷积神经网络(CNN)通常仅输出一个概率值,而不提供有关原始图像或不同图像之间相互关系的任何其他信息。降维技术(DRT)用于可视化高维医学图像数据,但不适用于判别分类分析。
我们开发了一种用于医学图像的交互式表型分布场可视化系统,以准确反映病变的病理特征及其与其他病变的相似性,以协助放射科医生进行诊断和医学研究。
我们提出了一种新的方法,称为分类正则化均匀流形逼近和投影(UMAP),称为 CReUMAP,它结合了 CNN 和 DRT 的优势,将提取的特征向量与 CNN 预测的恶性概率融合后投影到二维空间,然后应用在 2614 个超声图像上训练的空间分割分类器进行甲状腺结节恶性程度的预测和指导放射科医生。
CReUMAP 嵌入与甲状腺结节的 TI-RADS 分类密切相关。在具有已知病理诊断的训练数据中嵌入外部测试数据集的参数版本,可显著提高良性和恶性结节的诊断准确性(p 值=0.016)和信心(p 值=1.902×10),以及不同经验水平的 8 位放射科医生的观察者间一致性(kappa≥0.75)。CReUMAP 在测试集中的准确率为 90.8%,灵敏度为 92.1%,特异性为 88.6%。
CReUMAP 嵌入与甲状腺结节的病理诊断密切相关,有助于放射科医生做出更准确、更有信心和更一致的诊断。只要可以输出对应分类模型的提取特征向量和预测诊断概率,医疗中心就可以使用已经训练好的分类模型,以可更新的方式在不断增长的本地数据库上生成本地自适应嵌入。