Suppr超能文献

甲状腺成像中深度学习的叙述性综述:当前进展与未来前景

A narrative review of deep learning in thyroid imaging: current progress and future prospects.

作者信息

Yang Wan-Ting, Ma Bu-Yun, Chen Yang

机构信息

Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Quant Imaging Med Surg. 2024 Feb 1;14(2):2069-2088. doi: 10.21037/qims-23-908. Epub 2024 Jan 19.

Abstract

BACKGROUND AND OBJECTIVE

Deep learning (DL) has contributed substantially to the evolution of image analysis by unlocking increased data and computational power. These DL algorithms have further facilitated the growing trend of implementing precision medicine, particularly in areas of diagnosis and therapy. Thyroid imaging, as a routine means to screening for thyroid diseases on large-scale populations, is a massive data source for the development of DL models. Thyroid disease is a global health problem and involves structural and functional changes. The objective of this study was to evaluate the general rules and future directions of DL networks in thyroid medical image analysis through a review of original articles published between 2018 and 2023.

METHODS

We searched for English-language articles published between April 2018 and September 2023 in the databases of PubMed, Web of Science, and Google Scholar. The keywords used in the search included artificial intelligence or DL, thyroid diseases, and thyroid nodule or thyroid carcinoma.

KEY CONTENT AND FINDINGS

The computer vision tasks of DL in thyroid imaging included classification, segmentation, and detection. The current applications of DL in clinical workflow were found to mainly include management of thyroid nodules/carcinoma, risk evaluation of thyroid cancer metastasis, and discrimination of functional thyroid diseases.

CONCLUSIONS

DL is expected to enhance the quality of thyroid images and provide greater precision in the assessment of thyroid images. Specifically, DL can increase the diagnostic accuracy of thyroid diseases and better inform clinical decision-making.

摘要

背景与目的

深度学习(DL)通过释放更多数据和计算能力,为图像分析的发展做出了重大贡献。这些深度学习算法进一步推动了精准医学实施的发展趋势,尤其是在诊断和治疗领域。甲状腺成像作为大规模人群筛查甲状腺疾病的常规手段,是深度学习模型开发的巨大数据源。甲状腺疾病是一个全球性的健康问题,涉及结构和功能变化。本研究的目的是通过回顾2018年至2023年发表的原创文章,评估深度学习网络在甲状腺医学图像分析中的一般规律和未来方向。

方法

我们在PubMed、科学网和谷歌学术数据库中搜索了2018年4月至2023年9月发表的英文文章。搜索中使用的关键词包括人工智能或深度学习、甲状腺疾病以及甲状腺结节或甲状腺癌。

关键内容与发现

深度学习在甲状腺成像中的计算机视觉任务包括分类、分割和检测。目前发现深度学习在临床工作流程中的应用主要包括甲状腺结节/癌的管理、甲状腺癌转移的风险评估以及功能性甲状腺疾病的鉴别。

结论

深度学习有望提高甲状腺图像的质量,并在甲状腺图像评估中提供更高的精度。具体而言,深度学习可以提高甲状腺疾病的诊断准确性,并更好地为临床决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8e5/10895129/1619be3b8b29/qims-14-02-2069-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验