Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Office of Hospital Director, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Lipids Health Dis. 2023 Jan 28;22(1):16. doi: 10.1186/s12944-022-01761-4.
BACKGROUND: Ischemic strokes are primarily caused by intracranial and extracranial atherosclerotic stenosis. Nontraditional lipid parameters broaden traditional lipid profiles, better reflect the metabolism and interaction between different lipid components, and optimize the predictive ability of lipid profiles for atherosclerotic diseases. This research was carried out to investigate the predictive value of nontraditional lipid parameters for intracranial or extracranial atherosclerotic stenosis. METHODS: The investigation collected data from inpatients who underwent cervical vascular ultrasonography, carotid CTA, cerebral artery CTA or MRA, and brain MRI or CT from December 2014 to December 2021. The nontraditional lipid parameters were calculated by collecting traditional lipid parameters. To evaluate the predictive power of nontraditional lipid parameters, logistic regression and receiver operating characteristic curve (ROC) analyses were performed. RESULTS: Based on the inclusion and exclusion criteria, 545 patients were included. According to the imaging results, inpatients were divided into two groups, including no intracranial or extracranial atherosclerotic stenosis (n = 250) and intracranial or extracranial atherosclerotic stenosis (AS, n = 295). Among them, AS was further divided into three subgroups: intracranial atherosclerotic stenosis (ICAS), extracranial atherosclerotic stenosis (ECAS) and combined intracranial and extracranial atherosclerotic stenosis (IECAS). Logistic regression analysis showed that nontraditional lipid parameters, including the atherogenic index of plasma (AIP), TG/HDL-C, remnant cholesterol (RC), nonhigh-density lipoprotein cholesterol (non-HDL-C), lipoprotein combine index (LCI), atherogenic coefficient (AC), Castelli's index-I (CRI-I) and Castelli's index-II (CRI-II), were significantly correlated with intracranial or extracranial atherosclerotic stenosis (P < 0.05). Compared with other nontraditional lipid parameters, regardless of adjusting for potential confounding factors, AIP had a greater OR value in ICAS (OR = 4.226, 95% CI: 1.681-10.625), ECAS (OR = 2.993, 95% CI: 1.119-8.003) and IECAS (OR = 4.502, 95% CI: 1.613-12.561). ROC curve analysis revealed that nontraditional lipid parameters had good predictive power for intracranial or extracranial atherosclerotic stenosis. CONCLUSIONS: This Chinese hospital-based study demonstrates that nontraditional lipid parameters (AIP, LCI, RC, CRI-II, AC, CRI-I and non-HDL-C) are effective predictors of intracranial and extracranial atherosclerotic stenosis, of which AIP may be a significant risk factor for predicting atherosclerotic arterial stenosis in the intracranial or extracranial regions.
背景:缺血性脑卒中主要由颅内和颅外动脉粥样硬化性狭窄引起。非传统脂质参数拓宽了传统脂质谱,更好地反映了不同脂质成分的代谢和相互作用,并优化了脂质谱对动脉粥样硬化疾病的预测能力。本研究旨在探讨非传统脂质参数对颅内或颅外动脉粥样硬化性狭窄的预测价值。
方法:该研究收集了 2014 年 12 月至 2021 年 12 月期间因接受颈部血管超声、颈动脉 CTA、脑动脉 CTA 或 MRA 以及脑 MRI 或 CT 而住院的患者的数据。通过收集传统脂质参数来计算非传统脂质参数。为了评估非传统脂质参数的预测能力,进行了逻辑回归和接收者操作特征曲线(ROC)分析。
结果:根据纳入和排除标准,共纳入 545 例患者。根据影像学结果,将住院患者分为两组,包括无颅内或颅外动脉粥样硬化性狭窄(n=250)和颅内或颅外动脉粥样硬化性狭窄(AS,n=295)。其中,AS 进一步分为三个亚组:颅内动脉粥样硬化性狭窄(ICAS)、颅外动脉粥样硬化性狭窄(ECAS)和颅内和颅外动脉粥样硬化性狭窄合并(IECAS)。逻辑回归分析显示,非传统脂质参数,包括血浆致动脉粥样硬化指数(AIP)、TG/HDL-C、残余胆固醇(RC)、非高密度脂蛋白胆固醇(non-HDL-C)、脂蛋白组合指数(LCI)、致动脉粥样硬化系数(AC)、卡斯特利指数-I(CRI-I)和卡斯特利指数-II(CRI-II),与颅内或颅外动脉粥样硬化性狭窄显著相关(P<0.05)。与其他非传统脂质参数相比,无论是否调整潜在混杂因素,AIP 在 ICAS(OR=4.226,95%CI:1.681-10.625)、ECAS(OR=2.993,95%CI:1.119-8.003)和 IECAS(OR=4.502,95%CI:1.613-12.561)中具有更大的 OR 值。ROC 曲线分析表明,非传统脂质参数对颅内或颅外动脉粥样硬化性狭窄具有良好的预测能力。
结论:本项基于中国医院的研究表明,非传统脂质参数(AIP、LCI、RC、CRI-II、AC、CRI-I 和非 HDL-C)是颅内和颅外动脉粥样硬化性狭窄的有效预测指标,其中 AIP 可能是颅内或颅外动脉粥样硬化性狭窄预测的重要危险因素。
Lipids Health Dis. 2020-7-4
J Clin Hypertens (Greenwich). 2022-1
Clin Appl Thromb Hemost. 2025
J Taibah Univ Med Sci. 2025-5-9
Curr Cardiol Rep. 2021-10-1
J Am Coll Cardiol. 2020-12-8
J Stroke Cerebrovasc Dis. 2020-10-9
Ann Neurol. 2020-10-10