Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
School of Life Science, University of Warwick, Coventry, CV4 7AL, UK.
Nat Commun. 2023 Jan 28;14(1):469. doi: 10.1038/s41467-023-36227-3.
The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.
细胞核中染色质的复杂和动态三维结构使得理解基因表达的调控具有挑战性,但也为表观遗传调控基因表达开辟了可能的途径。由于植物是固着的,它们进化出了复杂的方法来快速调节基因表达,以响应环境胁迫,这些方法被认为是通过染色质构象的变化来协调的,以介导特定的细胞和生理反应。然而,胁迫在多大程度上以及如何诱导染色质重排的动态变化仍然知之甚少。在这里,我们全面研究了与番茄热应激转录重编程相关的全基因组染色质变化。我们的数据表明,热应激诱导染色质结构的快速变化,导致启动子-增强子接触的瞬时形成,可能驱动热应激响应基因的表达。此外,我们证明了染色质空间重排需要 HSFA1a,这是番茄耐热所必需的转录因子(TF)。鉴于我们的发现,我们提出 TFs 通过启动子-增强子接触的三维重构来控制动态转录反应。