Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Translational Immunology Institute, SingHealth/Duke-NUS, Academic Medical Centre, The Academia, Singapore 169856, Singapore; Gustave Roussy Cancer Campus, Villejuif 94800, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif 94800, France.
Tissue Cell. 2023 Apr;81:102023. doi: 10.1016/j.tice.2023.102023. Epub 2023 Jan 14.
The extracellular accumulation of amyloid-β (Aβ) in plaques and associated neurodegeneration are the pathological hallmarks of Alzheimer's disease (AD). These plaques are surrounded by microglia-the resident tissue macrophages of the brain parenchyma that originate from primitive macrophages from the embryonic yolk sac. Microglia, including a unique subpopulation called "disease-associated microglia" (DAM), are strongly implicated in AD pathology; however, their exact function and physiology remain largely unknown. Notably, simple cell and tissue culture systems that adequately recreate the brain microenvironment and can simulate critical aspects of AD pathology could fundamentally contribute to elucidating microglial function in disease development and progression. Thus, we added human-induced pluripotent stem cell (hiPSC)-induced primitive macrophages (hiMacs) to hiPSC-induced cortical neurons (cell model) and cortical organoids (tissue model). The treatment of these culture systems with the O-acyl isopeptide of Aβ, which reverts to natural extracellular Aβ at neutral pH and starts self-aggregation, caused the degeneration of hiPSC-induced cortical neurons in 2D culture and within cortical organoid cultures. Notably, the hiMacs phagocytosed extracellular Aβ and exhibited a DAM-like phenotype. In both cell and tissue organoid culture systems, neurodegeneration was attenuated by the addition of hiMacs. Moreover, in cortical organoids, Aβ plaques formed more circular and fewer hotspot-like morphological structures in the vicinity of hiMacs. These findings demonstrate the utility of simple hiPSC-induced cortical cell and tissue culture systems supplemented with hiMacs for elucidating critical aspects of AD pathology, such as microglial function and physiology. Adopting such systems in routine research practice may lead to the development of novel therapeutic strategies for AD.
细胞外淀粉样蛋白-β (Aβ) 的积累和相关的神经退行性变是阿尔茨海默病 (AD) 的病理标志。这些斑块被小胶质细胞包围,小胶质细胞是脑实质的常驻组织巨噬细胞,起源于胚胎卵黄囊的原始巨噬细胞。小胶质细胞,包括一种称为“与疾病相关的小胶质细胞”(DAM) 的独特亚群,强烈暗示与 AD 病理学有关;然而,它们的确切功能和生理学仍然很大程度上未知。值得注意的是,简单的细胞和组织培养系统可以充分再现大脑微环境,并模拟 AD 病理学的关键方面,这可以从根本上促进阐明小胶质细胞在疾病发展和进展中的功能。因此,我们将人诱导多能干细胞 (hiPSC) 诱导的原始巨噬细胞 (hiMacs) 添加到 hiPSC 诱导的皮质神经元 (细胞模型) 和皮质类器官 (组织模型) 中。用 Aβ 的 O-酰基异肽处理这些培养系统,该异肽在中性 pH 下恢复为天然细胞外 Aβ 并开始自聚集,导致 2D 培养和皮质类器官培养中的 hiPSC 诱导的皮质神经元退化。值得注意的是,hiMacs 吞噬了细胞外 Aβ,并表现出类似于 DAM 的表型。在细胞和组织类器官培养系统中,添加 hiMacs 可减轻神经退行性变。此外,在皮质类器官中,在 hiMacs 附近,Aβ 斑块形成了更圆的、更少热点样的形态结构。这些发现证明了简单的 hiPSC 诱导的皮质细胞和组织培养系统补充 hiMacs 用于阐明 AD 病理学的关键方面的实用性,例如小胶质细胞的功能和生理学。在常规研究实践中采用这种系统可能会导致开发出针对 AD 的新型治疗策略。