Dolan Jonathan P, Cosgrove Sebastian C, Miller Gavin J
School of Chemical and Physical Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom.
JACS Au. 2022 Dec 7;3(1):47-61. doi: 10.1021/jacsau.2c00529. eCollection 2023 Jan 23.
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
虽然生物催化领域在过去20到30年中蓬勃发展,但在对碳水化合物活性酶的理解和改进方面,特别是参与聚糖构建块生物合成的糖核苷酸方面,进展相对较为缓慢。这一观点强调了需要进一步深入了解底物的选择性,并利用生物催化的基本原理(合理设计、定向进化、固定化)来扩大底物范围,以实现此类碳水化合物构建块的合成和/或提高酶的稳定性、动力学或周转率。此外,本文探讨了利用生物催化提供简单、经济高效的立体化学定义的碳水化合物材料的日益增长的前提,这些材料可用于后期化学功能化或自动化聚糖合成/聚合。