Meneghetti Maria C Z, Naughton Lucy, O'Shea Conor, Koffi Teki Dindet S-E, Chagnault Vincent, Nader Helena B, Rudd Timothy R, Yates Edwin A, Kovensky José, Miller Gavin J, Lima Marcelo A
Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo 04044-020, São Paulo, Brazil.
School of Life Sciences, Keele University, Keele ST55BG, Staffordshire, U.K.
ACS Omega. 2022 Jul 8;7(28):24461-24467. doi: 10.1021/acsomega.2c02070. eCollection 2022 Jul 19.
Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is ubiquitously distributed throughout the animal kingdom and represents a key regulator of biological processes and a largely untapped reservoir of potential therapeutic targets. The temporal and spatial variations in the HS structure underpin the concept of "heparanome" and a complex network of HS binding proteins. However, despite its widespread biological roles, the determination of direct structure-to-function correlations is impaired by HS chemical heterogeneity. Attempts to correlate substitution patterns (mostly at the level of sulfation) with a given biological activity have been made. Nonetheless, these do not generally consider higher-level conformational effects at the carbohydrate level. Here, the use of NMR chemical shift analysis, NOEs, and spin-spin coupling constants sheds new light on how different sulfation patterns affect the polysaccharide backbone geometry. Furthermore, the substitution of native -glycosidic linkages to hydrolytically more stable -glycosidic forms leads to observable conformational changes in model saccharides, suggesting that alternative chemical spaces can be accessed and explored using such mimetics. Employing a series of systematically modified heparin oligosaccharides (as a proxy for HS) and chemically synthesized - and -glycoside analogues, the chemical space occupied by such compounds is explored and described.
硫酸乙酰肝素(HS)是一种硫酸化的线性碳水化合物,修饰细胞表面和细胞外基质,在动物界广泛分布,是生物过程的关键调节因子,也是一个很大程度上未开发的潜在治疗靶点库。HS结构的时空变化支撑着“硫酸乙酰肝素组”的概念以及HS结合蛋白的复杂网络。然而,尽管HS具有广泛的生物学作用,但其化学异质性阻碍了直接结构与功能相关性的确定。人们曾尝试将取代模式(主要是硫酸化水平)与特定生物活性相关联。尽管如此,这些研究通常没有考虑碳水化合物水平上的高级构象效应。在这里,利用核磁共振化学位移分析、核Overhauser效应(NOE)和自旋 - 自旋耦合常数,为不同硫酸化模式如何影响多糖主链几何结构提供了新的见解。此外,将天然的α - 糖苷键替换为水解稳定性更高的β - 糖苷形式会导致模型糖类出现可观察到的构象变化,这表明可以使用此类模拟物来探索和进入其他化学空间。通过使用一系列系统修饰的肝素寡糖(作为HS的替代物)以及化学合成的α - 和β - 糖苷类似物,探索并描述了此类化合物占据的化学空间。