Suppr超能文献

基于 BiLSTM 和注意力机制的卷积神经网络人脸识别方法。

A Convolutional Neural Network Face Recognition Method Based on BiLSTM and Attention Mechanism.

机构信息

School of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, China.

School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China.

出版信息

Comput Intell Neurosci. 2023 Jan 19;2023:2501022. doi: 10.1155/2023/2501022. eCollection 2023.

Abstract

Face recognition technology is a powerful means to capture biological facial features and match facial data in existing databases. With the advantages of noncontact and long-distance implementation, it is being used in more and more scenarios. Affected by factors such as light, posture, and background environment, the face images captured by the device are still insufficient in the recognition rate of existing face recognition models. We propose an AB-FR model, a convolutional neural network face recognition method based on BiLSTM and attention mechanism. By adding an attention mechanism to the CNN model structure, the information from different channels is integrated to enhance the robustness of the network, thereby enhancing the extraction of facial features. Then, the BiLSTM method is used to extract the timing characteristics of different angles or different time photos of the same person so that convolutional blocks can obtain more face detail information. Finally, we used the cross-entropy loss function to optimize the model and realize the correct face recognition. The experimental results show that the improved network model indicates better identification performance and stronger robustness on some public datasets (such as CASIA-FaceV5, LFW, MTFL, CNBC, and ORL). Besides, the accuracy rate is 99.35%, 96.46%, 97.04%, 97.19%, and 96.79%, respectively.

摘要

人脸识别技术是一种捕捉生物面部特征并在现有数据库中匹配面部数据的强大手段。它具有非接触式和远距离实施的优点,因此正在被应用于越来越多的场景中。然而,由于设备捕捉到的面部图像受到光照、姿势和背景环境等因素的影响,现有的人脸识别模型在识别率方面仍然存在不足。我们提出了一种 AB-FR 模型,这是一种基于 BiLSTM 和注意力机制的卷积神经网络人脸识别方法。通过在 CNN 模型结构中添加注意力机制,整合来自不同通道的信息,增强网络的鲁棒性,从而增强面部特征的提取能力。然后,使用 BiLSTM 方法提取同一个人不同角度或不同时间照片的时间特征,以便卷积块可以获得更多的面部细节信息。最后,我们使用交叉熵损失函数来优化模型,实现正确的人脸识别。实验结果表明,改进后的网络模型在一些公共数据集(如 CASIA-FaceV5、LFW、MTFL、CNBC 和 ORL)上具有更好的识别性能和更强的鲁棒性。此外,准确率分别为 99.35%、96.46%、97.04%、97.19%和 96.79%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90f5/9879688/b8ce3591323d/CIN2023-2501022.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验