Suppr超能文献

基于图像处理的人脸识别算法研究。

Research on Face Recognition Algorithm Based on Image Processing.

机构信息

College of Information and Communication Engineering University, Harbin 150001, Heilongjiang, China.

出版信息

Comput Intell Neurosci. 2022 Mar 18;2022:9224203. doi: 10.1155/2022/9224203. eCollection 2022.

Abstract

While network technology is convenient for our daily life, the problems that are exposed are also endless. The most important thing for everyone is information security. In order to improve the security level of network information and identify and detect faces, the method used in this paper has improved compared with the traditional AdaBoost method and skin color method. AdaBoost detection is performed on the image, which reduces the probability of false detection. The experiment compares the experimental results of the AdaBoost method, the skin color method and the skin color + AdaBoost method. All operations in the KPCA and KFDA algorithms are performed by the inner product kernel function defined in the original space, and no specific non-linear mapping function is involved.The full name of KPCA is kernel principal component analysis. The full name of KFDA is kernel Fisher discriminant analysis. Combining the zero-space method kernel discriminant analysis method improves the ability of discriminant analysis to extract non-linear features. Through the secondary extraction of PCA features, a better recognition result than the PCA method is obtained. This paper also proposes a zero-space based Fisher discriminant analysis method. Experiments show that the zero-space-based method makes full use of the useful discriminant information in the zero space of the intraclass dispersion matrix, which improves the accuracy of face recognition to some extent.If you choose the polynomial kernel function, when  = 0.8, KPCA has a higher recognition ability. When  = 2, the recognition rate of KFDA and zero space-based KFDA is the largest. For polynomial functions, in general,  = 2.

摘要

虽然网络技术给我们的日常生活带来了便利,但暴露出来的问题也层出不穷。对每个人来说最重要的是信息安全。为了提高网络信息的安全性,识别和检测人脸,本文采用的方法与传统的 AdaBoost 方法和肤色方法相比有所改进。对图像进行 AdaBoost 检测,降低了误检概率。实验比较了 AdaBoost 方法、肤色方法和肤色+AdaBoost 方法的实验结果。KPCA 和 KFDA 算法中的所有操作都是通过原始空间中定义的内积核函数执行的,不涉及特定的非线性映射函数。KPCA 的全称是核主成分分析。KFDA 的全称是核 Fisher 判别分析。结合零空间方法核判别分析方法,提高了判别分析提取非线性特征的能力。通过对 PCA 特征的二次提取,得到了比 PCA 方法更好的识别结果。本文还提出了一种基于零空间的 Fisher 判别分析方法。实验表明,基于零空间的方法充分利用了类内散布矩阵零空间中的有用判别信息,在一定程度上提高了人脸识别的准确性。如果选择多项式核函数,当  = 0.8 时,KPCA 具有更高的识别能力。当  = 2 时,KFDA 和基于零空间的 KFDA 的识别率最大。对于多项式函数,一般来说,  = 2。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e92/8956407/50db7aee8bae/CIN2022-9224203.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验