Suppr超能文献

使用卷积神经网络改进前列腺T2弛豫测量的定量参数估计

Improved Quantitative Parameter Estimation for Prostate T2 Relaxometry using Convolutional Neural Networks.

作者信息

Bolan Patrick J, Saunders Sara L, Kay Kendrick, Gross Mitchell, Akcakaya Mehmet, Metzger Gregory J

机构信息

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN.

Department of Radiology, University of Minnesota, Minneapolis MN.

出版信息

medRxiv. 2023 Mar 29:2023.01.11.23284194. doi: 10.1101/2023.01.11.23284194.

Abstract

This work seeks to evaluate multiple methods for quantitative parameter estimation from standard T mapping acquisitions in the prostate. The T estimation performance of methods based on neural networks (NN) was quantitatively compared to that of conventional curve fitting techniques. Large physics-based synthetic datasets simulating T mapping acquisitions were generated for training NNs and for quantitative performance comparisons. Ten combinations of different NN architectures, training strategies, and training corpora were implemented and compared with four different curve fitting strategies. All methods were compared quantitatively using synthetic data with known ground truth, and further compared on test data, with and without noise augmentation, to evaluate feasibility and noise robustness. In the evaluation on synthetic data, a convolutional neural network (CNN), trained in a supervised fashion using synthetic data generated from naturalistic images, showed the highest overall accuracy and precision amongst all the methods. On data, this best-performing method produced low-noise T maps and showed the least deterioration with increasing input noise levels. This study showed that a CNN, trained with synthetic data in a supervised manner, may provide superior T estimation performance compared to conventional curve fitting, especially in low signal-to-noise regions.

摘要

这项工作旨在评估从前列腺标准T映射采集中进行定量参数估计的多种方法。将基于神经网络(NN)的方法的T估计性能与传统曲线拟合技术的性能进行了定量比较。生成了模拟T映射采集的基于物理的大型合成数据集,用于训练神经网络和进行定量性能比较。实施了十种不同神经网络架构、训练策略和训练语料库的组合,并与四种不同的曲线拟合策略进行了比较。所有方法都使用具有已知真实值的合成数据进行了定量比较,并在有无噪声增强的测试数据上进一步比较,以评估可行性和噪声鲁棒性。在合成数据评估中,一个以监督方式使用从自然图像生成的合成数据进行训练的卷积神经网络(CNN)在所有方法中显示出最高的总体准确性和精度。在测试数据上,这种性能最佳的方法生成了低噪声的T映射,并且随着输入噪声水平的增加,性能下降最少。这项研究表明,与传统曲线拟合相比,以监督方式使用合成数据训练的CNN可能提供更优异的T估计性能,尤其是在低信噪比区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ee/10056280/865299d84b61/nihpp-2023.01.11.23284194v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验