Suppr超能文献

MANTIS:用于高效磁共振参数映射的基于模型增强的神经网络与非相干 k 空间采样。

MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.

机构信息

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

Magn Reson Med. 2019 Jul;82(1):174-188. doi: 10.1002/mrm.27707. Epub 2019 Mar 12.

Abstract

PURPOSE

To develop and evaluate a novel deep learning-based image reconstruction approach called MANTIS (Model-Augmented Neural neTwork with Incoherent k-space Sampling) for efficient MR parameter mapping.

METHODS

MANTIS combines end-to-end convolutional neural network (CNN) mapping, incoherent k-space undersampling, and a physical model as a synergistic framework. The CNN mapping directly converts a series of undersampled images straight into MR parameter maps using supervised training. Signal model fidelity is enforced by adding a pathway between the undersampled k-space and estimated parameter maps to ensure that the parameter maps produced synthesized k-space consistent with the acquired undersampling measurements. The MANTIS framework was evaluated on the T mapping of the knee at different acceleration rates and was compared with 2 other CNN mapping methods and conventional sparsity-based iterative reconstruction approaches. Global quantitative assessment and regional T analysis for the cartilage and meniscus were performed to demonstrate the reconstruction performance of MANTIS.

RESULTS

MANTIS achieved high-quality T mapping at both moderate (R = 5) and high (R = 8) acceleration rates. Compared to conventional reconstruction approaches that exploited image sparsity, MANTIS yielded lower errors (normalized root mean square error of 6.1% for R = 5 and 7.1% for R = 8) and higher similarity (structural similarity index of 86.2% at R = 5 and 82.1% at R = 8) to the reference in the T estimation. MANTIS also achieved superior performance compared to direct CNN mapping and a 2-step CNN method.

CONCLUSION

The MANTIS framework, with a combination of end-to-end CNN mapping, signal model-augmented data consistency, and incoherent k-space sampling, is a promising approach for efficient and robust estimation of quantitative MR parameters.

摘要

目的

开发并评估一种新的基于深度学习的图像重建方法,称为 MANTIS(具有非相干 k 空间采样的模型增强神经网络),用于高效的磁共振参数映射。

方法

MANTIS 结合了端到端卷积神经网络(CNN)映射、非相干 k 空间欠采样和物理模型作为协同框架。CNN 映射通过监督训练直接将一系列欠采样图像转换为磁共振参数图。通过在欠采样 k 空间和估计的参数图之间添加一个路径,强制信号模型保真度,以确保生成的参数图合成的 k 空间与获取的欠采样测量一致。该 MANTIS 框架在不同加速率的膝关节 T 映射上进行了评估,并与其他 2 种 CNN 映射方法和传统基于稀疏性的迭代重建方法进行了比较。进行了全局定量评估和软骨及半月板的区域 T 分析,以证明 MANTIS 的重建性能。

结果

MANTIS 在中速(R = 5)和高速(R = 8)加速率下都实现了高质量的 T 映射。与利用图像稀疏性的传统重建方法相比,MANTIS 产生的误差更小(R = 5 时的归一化均方根误差为 6.1%,R = 8 时为 7.1%),与参考值的相似度更高(R = 5 时的结构相似性指数为 86.2%,R = 8 时为 82.1%)。与直接 CNN 映射和两步 CNN 方法相比,MANTIS 也取得了更好的性能。

结论

MANTIS 框架结合了端到端 CNN 映射、信号模型增强的数据一致性和非相干 k 空间采样,是一种用于高效、稳健地估计定量磁共振参数的有前途的方法。

相似文献

引用本文的文献

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
3
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
5
Magnetic Resonance Fingerprinting-An Overview.磁共振指纹识别——概述
Curr Opin Biomed Eng. 2017 Sep;3:56-66. doi: 10.1016/j.cobme.2017.11.001.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验