Suppr超能文献

同时进行蛋白质组定位和周转分析揭示了蛋白质稳态破坏的时空特征。

Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions.

作者信息

Currie Jordan, Manda Vyshnavi, Robinson Sean K, Lai Celine, Agnihotri Vertica, Hidalgo Veronica, Ludwig R W, Zhang Kai, Pavelka Jay, Wang Zhao V, Rhee June-Wha, Lam Maggie P Y, Lau Edward

机构信息

Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.

出版信息

bioRxiv. 2024 Jan 17:2023.01.04.521821. doi: 10.1101/2023.01.04.521821.

Abstract

The functions of proteins depend on their spatial and temporal distributions, which are not directly measured by static protein abundance. Under endoplasmic reticulum (ER) stress, the unfolded protein response (UPR) pathway remediates proteostasis in part by altering the turnover kinetics and spatial distribution of proteins. A global view of these spatiotemporal changes has yet to emerge and it is unknown how they affect different cellular compartments and pathways. Here we describe a mass spectrometry-based proteomics strategy and data analysis pipeline, termed Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently the changes in protein turnover and subcellular distribution in the same experiment. Investigating two common UPR models of thapsigargin and tunicamycin challenge in human AC16 cells, we find that the changes in protein turnover kinetics during UPR varies across subcellular localizations, with overall slowdown but an acceleration in endoplasmic reticulum and Golgi proteins involved in stress response. In parallel, the spatial proteomics component of the experiment revealed an externalization of amino acid transporters and ion channels under UPR, as well as the migration of RNA-binding proteins toward an endosome co-sedimenting compartment. The SPLAT experimental design classifies heavy and light SILAC labeled proteins separately, allowing the observation of differential localization of new and old protein pools and capturing a partition of newly synthesized EGFR and ITGAV to the ER under stress that suggests protein trafficking disruptions. Finally, application of SPLAT toward human induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) exposed to the cancer drug carfilzomib, identified a selective disruption of proteostasis in sarcomeric proteins as a potential mechanism of carfilzomib-mediated cardiotoxicity. Taken together, this study provides a global view into the spatiotemporal dynamics of human cardiac cells and demonstrates a method for inferring the coordinations between spatial and temporal proteome regulations in stress and drug response.

摘要

蛋白质的功能取决于其时空分布,而静态蛋白质丰度并不能直接测量这些分布。在内质网(ER)应激下,未折叠蛋白反应(UPR)途径通过改变蛋白质的周转动力学和空间分布,部分地修复蛋白质稳态。这些时空变化尚未形成一个整体的认识,并且它们如何影响不同的细胞区室和途径也尚不清楚。在此,我们描述了一种基于质谱的蛋白质组学策略和数据分析流程,称为同时蛋白质组定位与周转(SPLAT),用于在同一实验中同时测量蛋白质周转和亚细胞分布的变化。通过研究人类AC16细胞中两种常见的UPR模型——毒胡萝卜素和衣霉素挑战,我们发现UPR过程中蛋白质周转动力学的变化在不同亚细胞定位中有所不同,总体上减缓,但内质网和参与应激反应的高尔基体蛋白加速周转。同时,该实验的空间蛋白质组学部分揭示了UPR下氨基酸转运体和离子通道的外化,以及RNA结合蛋白向内体共沉降区室的迁移。SPLAT实验设计分别对重链和轻链SILAC标记的蛋白质进行分类,从而能够观察新旧蛋白质库的差异定位,并捕捉到应激下新合成的表皮生长因子受体(EGFR)和整合素αV(ITGAV)向内质网的分配,这表明蛋白质转运受到破坏。最后,将SPLAT应用于暴露于抗癌药物卡非佐米的人类诱导多能干细胞衍生心肌细胞(iPSC-CM),发现肌节蛋白中蛋白质稳态的选择性破坏是卡非佐米介导的心脏毒性的潜在机制。综上所述,本研究提供了对人类心脏细胞时空动态的整体认识,并展示了一种推断应激和药物反应中时空蛋白质组调控之间协调性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d7f/10798326/82f8ecc37cfa/nihpp-2023.01.04.521821v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验