Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK.
MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
Nat Commun. 2022 Oct 10;13(1):5948. doi: 10.1038/s41467-022-33570-9.
The steady-state localisation of proteins provides vital insight into their function. These localisations are context specific with proteins translocating between different subcellular niches upon perturbation of the subcellular environment. Differential localisation, that is a change in the steady-state subcellular location of a protein, provides a step towards mechanistic insight of subcellular protein dynamics. High-accuracy high-throughput mass spectrometry-based methods now exist to map the steady-state localisation and re-localisation of proteins. Here, we describe a principled Bayesian approach, BANDLE, that uses these data to compute the probability that a protein differentially localises upon cellular perturbation. Extensive simulation studies demonstrate that BANDLE reduces the number of both type I and type II errors compared to existing approaches. Application of BANDLE to several datasets recovers well-studied translocations. In an application to cytomegalovirus infection, we obtain insights into the rewiring of the host proteome. Integration of other high-throughput datasets allows us to provide the functional context of these data.
蛋白质的稳态定位为其功能提供了重要的见解。这些定位是特定于上下文的,蛋白质在亚细胞环境受到干扰时会在不同的亚细胞龛位之间转移。蛋白质的差异定位(即蛋白质在稳态亚细胞位置上的变化)为深入了解亚细胞蛋白质动力学的机制提供了一个途径。现在已经有基于高准确度高通量质谱的方法来绘制蛋白质的稳态定位和重定位图谱。在这里,我们描述了一种基于贝叶斯原理的方法 BANDLE,该方法使用这些数据来计算细胞扰动后蛋白质差异定位的概率。广泛的模拟研究表明,与现有方法相比,BANDLE 减少了 I 型和 II 型错误的数量。将 BANDLE 应用于几个数据集,成功地恢复了已被广泛研究的易位。在巨细胞病毒感染的应用中,我们获得了宿主蛋白质组重布线的深入见解。整合其他高通量数据集使我们能够提供这些数据的功能背景。