Suppr超能文献

利用深度神经网络中的疾病易感性进行基因关联研究。

Genetic association studies using disease liabilities from deep neural networks.

作者信息

Yang Lu, Sadler Marie C, Altman Russ B

机构信息

Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.

Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.

出版信息

medRxiv. 2024 Sep 8:2023.01.18.23284383. doi: 10.1101/2023.01.18.23284383.

Abstract

The case-control study is a widely used method for investigating the genetic underpinnings of binary traits. However, long-term, prospective cohort studies often grapple with absent or evolving health-related outcomes. Here, we propose two methods, and , for conducting genome-wide association study (GWAS) that leverage disease liabilities calculated from deep patient phenotyping. Analyzing 38 common traits in ~300,000 UK Biobank participants, we identified an increased number of loci compared to the conventional case-control approach, with high replication rates in larger external GWAS. Further analyses confirmed the disease-specificity of the genetic architecture with the meta method demonstrating higher robustness when phenotypes were imputed with low accuracy. Additionally, polygenic risk scores based on disease liabilities more effectively predicted newly diagnosed cases in the 2022 dataset, which were controls in the earlier 2019 dataset. Our findings demonstrate that integrating high-dimensional phenotypic data into deep neural networks enhances genetic association studies while capturing disease-relevant genetic architecture.

摘要

病例对照研究是一种广泛用于调查二元性状遗传基础的方法。然而,长期的前瞻性队列研究常常面临健康相关结局缺失或不断变化的问题。在此,我们提出了两种方法,即[方法名称1]和[方法名称2],用于开展全基因组关联研究(GWAS),该研究利用从深入的患者表型分析中计算得出的疾病易感性。通过分析约30万名英国生物银行参与者的38种常见性状,我们发现与传统病例对照方法相比,发现的基因座数量有所增加,并且在更大规模的外部GWAS中有较高的重复率。进一步分析证实了遗传结构的疾病特异性,其中元分析方法在表型推断准确性较低时表现出更高的稳健性。此外,基于疾病易感性的多基因风险评分在2022年数据集中能更有效地预测新诊断病例,这些病例在2019年早期数据集中为对照。我们的研究结果表明,将高维表型数据整合到深度神经网络中可增强遗传关联研究,同时捕捉与疾病相关的遗传结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74a2/11422864/0aaaa6fb6906/nihpp-2023.01.18.23284383v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验