Garcia Gabriela A, Kariyawasam Tharanga N, Lord Anton R, da Costa Cristiano Fernandes, Chaves Lana Bitencourt, Lima-Junior Josué da Costa, Maciel-de-Freitas Rafael, Sikulu-Lord Maggy T
Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil.
School of Biological Sciences, Faculty of Science, The University of Queensland, Brisbane, QLD 4072,, Australia.
PNAS Nexus. 2022 Dec 7;1(5):pgac272. doi: 10.1093/pnasnexus/pgac272. eCollection 2022 Nov.
To eliminate malaria, scalable tools that are rapid, affordable, and can detect patients with low parasitemia are required. Non-invasive diagnostic tools that are rapid, reagent-free, and affordable would also provide a justifiable platform for testing malaria in asymptomatic patients. However, non-invasive surveillance techniques for malaria remain a diagnostic gap. Here, we show near-infrared absorption peaks acquired non-invasively through the skin using a miniaturized hand-held near-infrared spectrometer. Using spectra from the ear, these absorption peaks and machine learning techniques enabled non-invasive detection of malaria-infected human subjects with varying parasitemia levels in less than 10 s.
为了消除疟疾,需要有可扩展的工具,这些工具要快速、经济实惠,并且能够检测出低疟原虫血症患者。快速、无需试剂且经济实惠的非侵入性诊断工具也将为无症状患者的疟疾检测提供一个合理的平台。然而,疟疾的非侵入性监测技术仍然存在诊断空白。在此,我们展示了使用小型手持式近红外光谱仪通过皮肤非侵入性获取的近红外吸收峰。利用耳部光谱,这些吸收峰和机器学习技术能够在不到10秒的时间内对不同疟原虫血症水平的疟疾感染人类受试者进行非侵入性检测。