Suppr超能文献

利用人工智能中红外光谱技术对不同寄生虫密度和贫血状况的人血样本进行疟疾感染筛查。

Screening of malaria infections in human blood samples with varying parasite densities and anaemic conditions using AI-Powered mid-infrared spectroscopy.

机构信息

Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.

School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK.

出版信息

Malar J. 2024 Jun 17;23(1):188. doi: 10.1186/s12936-024-05011-z.

Abstract

BACKGROUND

Effective testing for malaria, including the detection of infections at very low densities, is vital for the successful elimination of the disease. Unfortunately, existing methods are either inexpensive but poorly sensitive or sensitive but costly. Recent studies have shown that mid-infrared spectroscopy coupled with machine learning (MIRs-ML) has potential for rapidly detecting malaria infections but requires further evaluation on diverse samples representative of natural infections in endemic areas. The aim of this study was, therefore, to demonstrate a simple AI-powered, reagent-free, and user-friendly approach that uses mid-infrared spectra from dried blood spots to accurately detect malaria infections across varying parasite densities and anaemic conditions.

METHODS

Plasmodium falciparum strains NF54 and FCR3 were cultured and mixed with blood from 70 malaria-free individuals to create various malaria parasitaemia and anaemic conditions. Blood dilutions produced three haematocrit ratios (50%, 25%, 12.5%) and five parasitaemia levels (6%, 0.1%, 0.002%, 0.00003%, 0%). Dried blood spots were prepared on Whatman filter papers and scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) for machine-learning analysis. Three classifiers were trained on an 80%/20% split of 4655 spectra: (I) high contrast (6% parasitaemia vs. negative), (II) low contrast (0.00003% vs. negative) and (III) all concentrations (all positive levels vs. negative). The classifiers were validated with unseen datasets to detect malaria at various parasitaemia levels and anaemic conditions. Additionally, these classifiers were tested on samples from a population survey in malaria-endemic villages of southeastern Tanzania.

RESULTS

The AI classifiers attained over 90% accuracy in detecting malaria infections as low as one parasite per microlitre of blood, a sensitivity unattainable by conventional RDTs and microscopy. These laboratory-developed classifiers seamlessly transitioned to field applicability, achieving over 80% accuracy in predicting natural P. falciparum infections in blood samples collected during the field survey. Crucially, the performance remained unaffected by various levels of anaemia, a common complication in malaria patients.

CONCLUSION

These findings suggest that the AI-driven mid-infrared spectroscopy approach holds promise as a simplified, sensitive and cost-effective method for malaria screening, consistently performing well despite variations in parasite densities and anaemic conditions. The technique simply involves scanning dried blood spots with a desktop mid-infrared scanner and analysing the spectra using pre-trained AI classifiers, making it readily adaptable to field conditions in low-resource settings. In this study, the approach was successfully adapted to field use, effectively predicting natural malaria infections in blood samples from a population-level survey in Tanzania. With additional field trials and validation, this technique could significantly enhance malaria surveillance and contribute to accelerating malaria elimination efforts.

摘要

背景

有效的疟疾检测,包括对极低密度感染的检测,对于成功消除这种疾病至关重要。不幸的是,现有的方法要么价格低廉但灵敏度差,要么灵敏度高但成本高。最近的研究表明,中红外光谱结合机器学习(MIRs-ML)具有快速检测疟疾感染的潜力,但需要在代表流行地区自然感染的各种样本上进一步评估。因此,本研究的目的是展示一种简单的、基于人工智能的、无试剂且用户友好的方法,该方法使用来自干血斑的中红外光谱,可在不同寄生虫密度和贫血条件下准确检测疟疾感染。

方法

培养恶性疟原虫 NF54 和 FCR3 株,并与 70 名无疟疾个体的血液混合,以产生不同的疟疾寄生虫血症和贫血条件。血液稀释产生三个血细胞比容比(50%、25%、12.5%)和五个寄生虫血症水平(6%、0.1%、0.002%、0.00003%、0.00000%)。将干血斑制备在沃特曼滤纸上,并使用衰减全反射傅里叶变换红外光谱(ATR-FTIR)进行机器学习分析。三个分类器在 4655 个光谱的 80%/20%分割上进行训练:(I)高对比度(6%寄生虫血症与阴性),(II)低对比度(0.00003%与阴性)和(III)所有浓度(所有阳性水平与阴性)。使用未见数据集验证分类器,以检测各种寄生虫血症水平和贫血条件下的疟疾。此外,这些分类器还在坦桑尼亚东南部疟疾流行村庄的人群调查样本上进行了测试。

结果

人工智能分类器在检测低至每微升血液中一个寄生虫的疟疾感染方面达到了 90%以上的准确率,这是传统 RDT 和显微镜无法达到的灵敏度。这些实验室开发的分类器无缝过渡到现场适用性,在现场调查中采集的血液样本中,对预测自然疟原虫感染的准确率超过 80%。至关重要的是,该性能不受各种贫血水平的影响,贫血是疟疾患者的常见并发症。

结论

这些发现表明,基于人工智能的中红外光谱方法具有成为一种简化、敏感和具有成本效益的疟疾筛查方法的潜力,即使在寄生虫密度和贫血条件存在差异的情况下,该方法的性能仍然良好。该技术只需使用台式中红外扫描仪扫描干血斑,然后使用预先训练的人工智能分类器分析光谱,使其易于适应低资源环境中的现场条件。在本研究中,该方法成功适应了现场使用,有效地预测了坦桑尼亚人群水平调查中血液样本中的自然疟疾感染。通过进一步的现场试验和验证,该技术可以显著增强疟疾监测,并有助于加速疟疾消除工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4840/11181574/22ee9cf59a03/12936_2024_5011_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验