Abberior Instruments GmbH, Göttingen, Germany.
Abberior GmbH, Göttingen, Germany.
Nat Commun. 2021 Mar 5;12(1):1478. doi: 10.1038/s41467-021-21652-z.
The recently introduced minimal photon fluxes (MINFLUX) concept pushed the resolution of fluorescence microscopy to molecular dimensions. Initial demonstrations relied on custom made, specialized microscopes, raising the question of the method's general availability. Here, we show that MINFLUX implemented with a standard microscope stand can attain 1-3 nm resolution in three dimensions, rendering fluorescence microscopy with molecule-scale resolution widely applicable. Advances, such as synchronized electro-optical and galvanometric beam steering and a stabilization that locks the sample position to sub-nanometer precision with respect to the stand, ensure nanometer-precise and accurate real-time localization of individually activated fluorophores. In our MINFLUX imaging of cell- and neurobiological samples, ~800 detected photons suffice to attain a localization precision of 2.2 nm, whereas ~2500 photons yield precisions <1 nm (standard deviation). We further demonstrate 3D imaging with localization precision of ~2.4 nm in the focal plane and ~1.9 nm along the optic axis. Localizing with a precision of <20 nm within ~100 µs, we establish this spatio-temporal resolution in single fluorophore tracking and apply it to the diffusion of single labeled lipids in lipid-bilayer model membranes.
最近引入的最小光子通量(MINFLUX)概念将荧光显微镜的分辨率推向了分子尺度。最初的演示依赖于定制的、专用显微镜,这引发了该方法是否普遍适用的问题。在这里,我们展示了使用标准显微镜支架实现的 MINFLUX 可以在三维空间中达到 1-3nm 的分辨率,从而使具有分子分辨率的荧光显微镜得到广泛应用。同步电光和电流计光束转向以及一种稳定技术的进步,将样品位置相对于支架锁定在亚纳米精度,确保了单独激活荧光团的纳米精度和准确实时定位。在我们对细胞和神经生物学样本的 MINFLUX 成像中,800 个检测到的光子足以达到 2.2nm 的定位精度,而2500 个光子则产生 <1nm 的精度(标准偏差)。我们进一步证明了在焦平面上具有2.4nm 定位精度和沿光轴方向具有1.9nm 定位精度的 3D 成像。在~100µs 内以<20nm 的精度定位,我们在单荧光团跟踪中建立了这种时空分辨率,并将其应用于脂质双层模型膜中单个标记脂质的扩散。