Suppr超能文献

生化网络中噪声的定位

Localization of Noise in Biochemical Networks.

作者信息

Fajiculay Erickson, Hsu Chao-Ping

机构信息

Institute of Chemistry, Academia Sinica, Taipei115201, Taiwan.

Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei115201, Taiwan.

出版信息

ACS Omega. 2023 Jan 11;8(3):3043-3056. doi: 10.1021/acsomega.2c06113. eCollection 2023 Jan 24.

Abstract

Noise, or uncertainty in biochemical networks, has become an important aspect of many biological problems. Noise can arise and propagate from external factors and probabilistic chemical reactions occurring in small cellular compartments. For species survival, it is important to regulate such uncertainties in executing vital cell functions. Regulated noise can improve adaptability, whereas uncontrolled noise can cause diseases. Simulation can provide a detailed analysis of uncertainties, but parameters such as rate constants and initial conditions are usually unknown. A general understanding of noise dynamics from the perspective of network structure is highly desirable. In this study, we extended the previously developed law of localization for characterizing noise in terms of (co)variances and developed noise localization theory. With linear noise approximation, we can expand a biochemical network into an extended set of differential equations representing a fictitious network for pseudo-components consisting of variances and covariances, together with chemical species. Through localization analysis, perturbation responses at the steady state of pseudo-components can be summarized into a sensitivity matrix that only requires knowledge of network topology. Our work allows identification of buffering structures at the level of species, variances, and covariances and can provide insights into noise flow under non-steady-state conditions in the form of a pseudo-chemical reaction. We tested noise localization in various systems, and here we discuss its implications and potential applications. Results show that this theory is potentially applicable in discriminating models, scanning network topologies with interesting noise behavior, and designing and perturbing networks with the desired response.

摘要

噪声,即生化网络中的不确定性,已成为许多生物学问题的一个重要方面。噪声可能源于外部因素以及在小细胞区室中发生的概率化学反应,并在其中传播。对于物种生存而言,在执行重要细胞功能时调节此类不确定性至关重要。受调控的噪声可提高适应性,而不受控制的噪声则会引发疾病。模拟能够对不确定性进行详细分析,但诸如速率常数和初始条件等参数通常是未知的。从网络结构的角度对噪声动态有一个全面的理解是非常必要的。在本研究中,我们扩展了先前开发的用于根据(协)方差表征噪声的定位定律,并发展了噪声定位理论。通过线性噪声近似,我们可以将一个生化网络扩展为一组扩展的微分方程,该方程代表一个由方差、协方差以及化学物质组成的伪组分的虚拟网络。通过定位分析,伪组分稳态下的扰动响应可以总结为一个仅需了解网络拓扑结构的灵敏度矩阵。我们的工作能够在物种、方差和协方差层面识别缓冲结构,并能够以伪化学反应的形式为非稳态条件下的噪声流动提供见解。我们在各种系统中测试了噪声定位,在此我们讨论其意义和潜在应用。结果表明,该理论在区分模型、扫描具有有趣噪声行为的网络拓扑结构以及设计和扰动具有期望响应的网络方面具有潜在的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7925/9878546/1aa2dd72e4fd/ao2c06113_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验