Yang Yilong, Wu Shipo, Wang Yudong, Shao Fangze, Lv Peng, Li Ruihua, Zhao Xiaofan, Zhang Jun, Zhang Xiaopeng, Li Jianmin, Hou Lihua, Xu Junjie, Chen Wei
Beijing Institute of Biotechnology, Beijing 100071, China.
Engineering (Beijing). 2023 Jan 23. doi: 10.1016/j.eng.2022.12.007.
Recombinant adenovirus serotype 5 (Ad5) vector has been widely applied in vaccine development targeting infectious diseases, such as Ebola virus disease and coronavirus disease 2019 (COVID-19). However, the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines. Thus, there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors. Herein, we address this need by utilizing biocompatible nanoparticles to modulate Ad5-host interactions. We show that positively charged human serum albumin nanoparticles ((+)HSAnp), which are capable of forming a complex with Ad5, significantly increase the transgene expression of Ad5 in both coxsackievirus-adenovirus receptor-positive and -negative cells. Furthermore, in charge- and dose-dependent manners, Ad5/(+)HSAnp complexes achieve robust (up to 227-fold higher) and long-term (up to 60 days) transgene expression in the lungs of mice following intranasal instillation. Importantly, in the presence of preexisting anti-Ad5 immunity, complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity. These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.
重组5型腺病毒(Ad5)载体已广泛应用于针对传染病的疫苗开发,如埃博拉病毒病和2019冠状病毒病(COVID-19)。然而,预先存在的抗载体免疫的高流行率会损害基于Ad5的疫苗的免疫原性。因此,在尽量减少预先存在的免疫的同时提高Ad5载体的插入物诱导的免疫,存在着大量未满足的需求。在此,我们通过利用生物相容性纳米颗粒来调节Ad5与宿主的相互作用来满足这一需求。我们表明,带正电荷的人血清白蛋白纳米颗粒((+)HSAnp)能够与Ad5形成复合物,在柯萨奇病毒-腺病毒受体阳性和阴性细胞中均显著增加Ad5的转基因表达。此外,以电荷和剂量依赖的方式,Ad5/(+)HSAnp复合物在鼻内滴注后在小鼠肺部实现了强大的(高达227倍)和长期的(长达60天)转基因表达。重要的是,在预先存在抗Ad5免疫的情况下,基于复合物Ad5的埃博拉和COVID-19疫苗显著增强了抗原特异性体液反应和黏膜免疫。这些发现表明,病毒聚集和电荷修饰可用于设计用于疫苗和基因治疗的增强型病毒载体。