Delesky Elizabeth A, Garcia Luis F, Lobo Aparna J, Mikofsky Rebecca A, Dowdy Nicolas D, Wallat Jaqueline D, Miyake Garret M, Srubar Wil V
Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States.
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
ACS Appl Polym Mater. 2022 Oct 14;4(10):7934-7942. doi: 10.1021/acsapm.2c01496. Epub 2022 Oct 3.
Ice growth mitigation is a pervasive challenge for multiple industries. In nature, ice-binding proteins (IBPs) demonstrate potent ice growth prevention through ice recrystallization inhibition (IRI). However, IBPs are expensive, difficult to produce in large quantities, and exhibit minimal resilience to nonphysiological environmental stressors, such as pH. For these reasons, researchers have turned to bioinspired polymeric materials that mimic IBP behavior. To date, however, no synthetic polymer has rivaled the ability of native IBPs to display IRI activity at ultralow nanomolar concentrations. In this work, we study the IRI activity of peptides and polypeptides inspired by common ice-binding residues of IBPs to inform the synthesis and characterization of a potent bioinspired polymer that mimics IBP behavior. We show first that the threonine polypeptide () displays the best IRI activity in phosphate-buffered saline (PBS). Second, we use as a molecular model to synthesize and test a bioinspired polymer, poly(2-hydroxypropyl methacrylamide) (). We show that exhibits potent IRI activity in neutral PBS at ultralow concentrations (0.01 mg/mL). demonstrates potent IRI activity at low molecular weights (2.3 kDa), with improved activity at higher molecular weights (32.8 kDa). These results substantiate that is a robust molecule that mitigates ice crystal growth at concentrations similar to native IBPs.
减轻冰的生长对多个行业来说都是一个普遍存在的挑战。在自然界中,冰结合蛋白(IBP)通过抑制冰重结晶(IRI)展现出强大的防冰生长能力。然而,IBP价格昂贵,难以大量生产,并且对非生理环境应激因素(如pH值)的耐受性极低。由于这些原因,研究人员已转向模仿IBP行为的仿生聚合物材料。然而,迄今为止,还没有一种合成聚合物能在超低纳摩尔浓度下与天然IBP展现IRI活性的能力相媲美。在这项工作中,我们研究了受IBP常见冰结合残基启发的肽和多肽的IRI活性,以为一种模仿IBP行为的高效仿生聚合物的合成与表征提供依据。我们首先表明,苏氨酸多肽()在磷酸盐缓冲盐水(PBS)中展现出最佳的IRI活性。其次,我们将用作分子模型来合成并测试一种仿生聚合物聚(甲基丙烯酸2-羟丙酯)()。我们表明,在中性PBS中,超低浓度(0.01 mg/mL)时就展现出强大的IRI活性。在低分子量(2.3 kDa)时就展现出强大的IRI活性,在较高分子量(32.8 kDa)时活性有所提高。这些结果证实,是一种强大的分子,能在与天然IBP相似的浓度下减轻冰晶生长。