Suppr超能文献

阿尔法药物:蛋白质靶点特异性从头分子生成

AlphaDrug: protein target specific de novo molecular generation.

作者信息

Qian Hao, Lin Cheng, Zhao Dengwei, Tu Shikui, Xu Lei

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Centre for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

PNAS Nexus. 2022 Oct 7;1(4):pgac227. doi: 10.1093/pnasnexus/pgac227. eCollection 2022 Sep.

Abstract

Traditional drug discovery is very laborious, expensive, and time-consuming, due to the huge combinatorial complexity of the discrete molecular search space. Researchers have turned to machine learning methods for help to tackle this difficult problem. However, most existing methods are either virtual screening on the available database of compounds by protein-ligand affinity prediction, or unconditional molecular generation, which does not take into account the information of the protein target. In this paper, we propose a protein target-oriented de novo drug design method, called AlphaDrug. Our method is able to automatically generate molecular drug candidates in an autoregressive way, and the drug candidates can dock into the given target protein well. To fulfill this goal, we devise a modified transformer network for the joint embedding of protein target and the molecule, and a Monte Carlo tree search (MCTS) algorithm for the conditional molecular generation. In the transformer variant, we impose a hierarchy of skip connections from protein encoder to molecule decoder for efficient feature transfer. The transformer variant computes the probabilities of next atoms based on the protein target and the molecule intermediate. We use the probabilities to guide the look-ahead search by MCTS to enhance or correct the next-atom selection. Moreover, MCTS is also guided by a value function implemented by a docking program, such that the paths with many low docking values are seldom chosen. Experiments on diverse protein targets demonstrate the effectiveness of our methods, indicating that AlphaDrug is a potentially promising solution to target-specific de novo drug design.

摘要

由于离散分子搜索空间的巨大组合复杂性,传统的药物发现过程非常费力、昂贵且耗时。研究人员已转向机器学习方法来帮助解决这一难题。然而,大多数现有方法要么是通过蛋白质-配体亲和力预测在可用化合物数据库上进行虚拟筛选,要么是无条件分子生成,而没有考虑蛋白质靶点的信息。在本文中,我们提出了一种面向蛋白质靶点的从头药物设计方法,称为AlphaDrug。我们的方法能够以自回归方式自动生成分子药物候选物,并且这些候选物能够很好地对接至给定的靶点蛋白质。为实现这一目标,我们设计了一种用于蛋白质靶点和分子联合嵌入的改进型变压器网络,以及一种用于条件分子生成的蒙特卡罗树搜索(MCTS)算法。在变压器变体中,我们从蛋白质编码器到分子解码器施加了一系列跳跃连接,以实现高效的特征传递。该变压器变体基于蛋白质靶点和分子中间体计算下一个原子的概率。我们使用这些概率来指导MCTS的前瞻搜索,以增强或校正下一个原子的选择。此外,MCTS还由对接程序实现的价值函数引导,因此很少选择具有许多低对接值的路径。对多种蛋白质靶点进行的实验证明了我们方法的有效性,表明AlphaDrug是针对特定靶点从头药物设计的一种潜在有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a79/9802440/82c0eb678b70/pgac227fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验