Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.
Global Security, Computing Applications Division, Computing Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.
J Chem Inf Model. 2020 Jun 22;60(6):2766-2772. doi: 10.1021/acs.jcim.0c00026. Epub 2020 May 11.
We present a new approach to estimate the binding affinity from given three-dimensional poses of protein-ligand complexes. In this scheme, every protein-ligand atom pair makes an additive free-energy contribution. The sum of these pairwise contributions then gives the total binding free energy or the logarithm of the dissociation constant. The pairwise contribution is calculated by a function implemented via a neural network that takes the properties of the two atoms and their distance as input. The pairwise function is trained using a portion of the PDBbind 2018 data set. The model achieves good accuracy for affinity predictions when evaluated with PDBbind 2018 and with the CASF-2016 benchmark, comparing favorably to many scoring functions such as that of AutoDock Vina. The framework here may be extended to incorporate other factors to further improve its accuracy and power.
我们提出了一种新方法,从给定的蛋白质-配体复合物的三维构象来估计结合亲和力。在这个方案中,每个蛋白质-配体原子对都会做出一个加和的自由能贡献。这些成对贡献的总和给出了总结合自由能或离解常数的对数。成对贡献是通过一个神经网络实现的函数计算的,该函数以两个原子的性质及其距离作为输入。使用一部分 PDBbind 2018 数据集对成对函数进行训练。该模型在使用 PDBbind 2018 和 CASF-2016 基准进行评估时,在亲和力预测方面取得了很好的准确性,优于许多评分函数,如 AutoDock Vina。这里的框架可以扩展到纳入其他因素,以进一步提高其准确性和能力。