Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France.
Environ Sci Technol. 2023 Feb 14;57(6):2297-2309. doi: 10.1021/acs.est.2c04587. Epub 2023 Jan 30.
The mechanistic pathway by which high relative humidity (RH) affects gas-particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. We observe increases in SOA mass of 45 and 85% with increasing RH from 10-20 to 60-80% at 243 and 263 K, respectively, and attribute it to the increased partitioning of semi-volatile compounds. At 263 K, we measure an increase of a factor 2-4 in the concentration of CHO, while the particle-phase concentrations of low-volatility species, such as CHO, remain almost constant. This results in a substantial shift in the chemical composition and volatility distribution toward less oxygenated and more volatile species at higher RH (e.g., at 263 K, O/C ratio = 0.55 and 0.40, at RH = 10 and 80%, respectively). By modeling particle growth using an aerosol growth model, which accounts for kinetic limitations, we can explain the enhancement in the semi-volatile fraction through the complementary effect of decreased compound activity and increased bulk-phase diffusivity. Our results highlight the importance of particle water content as a diluting agent and a plasticizer for organic aerosol growth.
高相对湿度 (RH) 影响气粒分配的机制途径仍不清楚,尽管许多研究报告指出在高 RH 下会增加二次有机气溶胶 (SOA) 的产率。在这里,我们使用实时、分子测量的气相和颗粒相,提供了对 RH 对低温(243 和 263 K)下生物氧化有机分子(来自α-蒎烯和异戊二烯)分配的机制理解,在 CERN 的 CLOUD 室中。我们观察到 SOA 质量分别增加了 45%和 85%,RH 从 10-20%增加到 60-80%,这归因于半挥发性化合物分配的增加。在 263 K 时,我们测量到 CHO 的浓度增加了 2-4 倍,而低挥发性物质(如 CHO)的颗粒相浓度几乎保持不变。这导致在更高 RH 下,化学组成和挥发性分布朝着含氧量更低和挥发性更高的物质发生了实质性的转变(例如,在 263 K 时,RH = 10%和 80%时的 O/C 比分别为 0.55 和 0.40)。通过使用考虑动力学限制的气溶胶增长模型对颗粒增长进行建模,我们可以通过降低化合物活性和增加体相扩散率的互补效应来解释半挥发性部分的增强。我们的结果强调了颗粒含水量作为有机气溶胶生长的稀释剂和增塑剂的重要性。