Suppr超能文献

基于树栖蚂蚁的最短路径问题分布式算法。

Distributed algorithms from arboreal ants for the shortest path problem.

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305.

Department of Management Science and Engineering, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2207959120. doi: 10.1073/pnas.2207959120. Epub 2023 Jan 30.

Abstract

Colonies of the arboreal turtle ant create networks of trails that link nests and food sources on the graph formed by branches and vines in the canopy of the tropical forest. Ants put down a volatile pheromone on the edges as they traverse them. At each vertex, the next edge to traverse is chosen using a decision rule based on the current pheromone level. There is a bidirectional flow of ants around the network. In a previous field study, it was observed that the trail networks approximately minimize the number of vertices, thus solving a variant of the popular shortest path problem without any central control and with minimal computational resources. We propose a biologically plausible model, based on a variant of the reinforced random walk on a graph, which explains this observation and suggests surprising algorithms for the shortest path problem and its variants. Through simulations and analysis, we show that when the rate of flow of ants does not change, the dynamics converges to the path with the minimum number of vertices, as observed in the field. The dynamics converges to the shortest path when the rate of flow increases with time, so the colony can solve the shortest path problem merely by increasing the flow rate. We also show that to guarantee convergence to the shortest path, bidirectional flow and a decision rule dividing the flow in proportion to the pheromone level are necessary, but convergence to approximately short paths is possible with other decision rules.

摘要

树栖龟蚁的蚁群会在树冠的树枝和藤本植物构成的图形上创建连接巢穴和食物源的路径网络。蚂蚁在穿越边缘时会在边缘释放挥发性信息素。在每个顶点处,根据当前信息素水平,使用基于决策规则来选择下一个要穿越的边缘。蚂蚁在网络周围双向流动。在之前的实地研究中,观察到路径网络大致上最小化了顶点数量,从而解决了一种没有任何中央控制和最小计算资源的流行最短路径问题的变体。我们提出了一个基于图上强化随机游走变体的生物学上合理的模型,该模型解释了这一观察结果,并为最短路径问题及其变体提出了令人惊讶的算法。通过模拟和分析,我们表明,当蚂蚁的流动速率不变时,动力学收敛到具有最小顶点数的路径,就像在实地观察到的那样。当流动速率随时间增加时,动力学收敛到最短路径,因此蚁群只需增加流动速率即可解决最短路径问题。我们还表明,为了保证收敛到最短路径,双向流动和根据信息素水平分配流动的决策规则是必要的,但使用其他决策规则也可以实现到近似短路径的收敛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0770/9963535/618c73121fd3/pnas.2207959120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验