Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093.
Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13093-13098. doi: 10.1073/pnas.1814448115. Epub 2018 Dec 3.
Novelty detection is a fundamental biological problem that organisms must solve to determine whether a given stimulus departs from those previously experienced. In computer science, this problem is solved efficiently using a data structure called a Bloom filter. We found that the fruit fly olfactory circuit evolved a variant of a Bloom filter to assess the novelty of odors. Compared with a traditional Bloom filter, the fly adjusts novelty responses based on two additional features: the similarity of an odor to previously experienced odors and the time elapsed since the odor was last experienced. We elaborate and validate a framework to predict novelty responses of fruit flies to given pairs of odors. We also translate insights from the fly circuit to develop a class of distance- and time-sensitive Bloom filters that outperform prior filters when evaluated on several biological and computational datasets. Overall, our work illuminates the algorithmic basis of an important neurobiological problem and offers strategies for novelty detection in computational systems.
新颖性检测是生物体必须解决的一个基本生物学问题,以确定给定的刺激是否与之前经历过的刺激不同。在计算机科学中,这个问题可以通过使用一种称为布隆过滤器的数据结构来有效地解决。我们发现,果蝇嗅觉回路进化出了一种布隆过滤器的变体,以评估气味的新颖性。与传统的布隆过滤器相比,果蝇根据两个额外的特征来调整新颖性反应:气味与之前经历过的气味的相似性,以及气味最后一次被闻到的时间间隔。我们详细阐述并验证了一个预测果蝇对给定气味对新颖性反应的框架。我们还将从果蝇回路中获得的见解转化为开发一类距离和时间敏感的布隆过滤器,这些过滤器在几个生物和计算数据集上的评估中表现优于先前的过滤器。总的来说,我们的工作阐明了一个重要神经生物学问题的算法基础,并为计算系统中的新颖性检测提供了策略。