Suppr超能文献

通过裂纹尖端软化实现坚韧和耐疲劳的聚合物网络。

Tough and fatigue-resistant polymer networks by crack tip softening.

机构信息

State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.

Department of Mechanical Engineering, The City College of New York, New York, NY 10031.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2217781120. doi: 10.1073/pnas.2217781120. Epub 2023 Jan 30.

Abstract

Soft materials fail by crack propagation under external loads. While fracture toughness of a soft material can be enhanced by orders of magnitude, its fatigue threshold remains insusceptible. In this work, we demonstrate a crack tip softening (CTS) concept to simultaneously improve the toughness and threshold of a single polymeric network. Polyacrylamide hydrogels have been selected as a model material. The polymer network is cured by two kinds of crosslinkers: a normal crosslinker and a light-degradable crosslinker. We characterize the pristine sample and light-treated sample by shear modulus, fracture toughness, fatigue threshold, and fractocohesive length. Notably, we apply light at the crack tip of a sample so that the light-sensitive crosslinkers degrade, resulting in a CTS sample with a softer and elastic crack tip. The pristine sample has a fracture toughness of 748.3 ± 15.19 J/m and a fatigue threshold of 9.3 J/m. By comparison, the CTS sample has a fracture toughness of 2,774.6 ± 127.14 J/m and a fatigue threshold of 33.8 J/m. Both fracture toughness and fatigue threshold have been enhanced by about four times. We attribute this simultaneous enhancement to stress de-concentration and elastic shielding at the crack tip. Different from the "fiber/matrix composite" concept and the "crystallization at the crack tip" concept, the CTS concept in the present work provides another option to simultaneously enhance the toughness and threshold, which improves the reliability of soft devices during applications.

摘要

软物质在外力作用下会通过裂纹扩展而失效。虽然软材料的断裂韧性可以提高几个数量级,但疲劳阈值仍然难以提高。在这项工作中,我们提出了一个裂纹尖端软化(CTS)的概念,以同时提高单个聚合物网络的韧性和阈值。聚丙烯酰胺水凝胶被选为模型材料。聚合物网络通过两种交联剂进行交联:一种是普通交联剂,另一种是光降解交联剂。我们通过剪切模量、断裂韧性、疲劳阈值和分形黏合长度来表征原始样品和光处理样品。值得注意的是,我们在样品的裂纹尖端施加光,使光敏感的交联剂降解,从而得到一个具有更软和弹性裂纹尖端的 CTS 样品。原始样品的断裂韧性为 748.3±15.19 J/m,疲劳阈值为 9.3 J/m。相比之下,CTS 样品的断裂韧性为 2774.6±127.14 J/m,疲劳阈值为 33.8 J/m。断裂韧性和疲劳阈值都提高了约四倍。我们将这种同时增强归因于裂纹尖端的应力去集中和弹性屏蔽。与“纤维/基体复合材料”概念和“裂纹尖端结晶化”概念不同,本工作中的 CTS 概念为同时提高韧性和阈值提供了另一种选择,这提高了软设备在应用中的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c75/9963307/cd3453cb6112/pnas.2217781120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验