Deng Jue, Yuk Hyunwoo, Wu Jingjing, Varela Claudia E, Chen Xiaoyu, Roche Ellen T, Guo Chuan Fei, Zhao Xuanhe
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Mater. 2021 Feb;20(2):229-236. doi: 10.1038/s41563-020-00814-2. Epub 2020 Sep 28.
Reliable functions of bioelectronic devices require conformal, stable and conductive interfaces with biological tissues. Integrating bioelectronic devices with tissues usually relies on physical attachment or surgical suturing; however, these methods face challenges such as non-conformal contact, unstable fixation, tissue damage, and/or scar formation. Here, we report an electrical bioadhesive (e-bioadhesive) interface, based on a thin layer of a graphene nanocomposite, that can provide rapid (adhesion formation within 5 s), robust (interfacial toughness >400 J m) and on-demand detachable integration of bioelectronic devices on diverse wet dynamic tissues. The electrical conductivity (>2.6 S m) of the e-bioadhesive interface further allows bidirectional bioelectronic communications. We demonstrate biocompatibility, applicability, mechanical and electrical stability, and recording and stimulation functionalities of the e-bioadhesive interface based on ex vivo porcine and in vivo rat models. These findings offer a promising strategy to improve tissue-device integration and enhance the performance of biointegrated electronic devices.
生物电子设备的可靠功能需要与生物组织形成保形、稳定且导电的界面。将生物电子设备与组织整合通常依赖于物理附着或手术缝合;然而,这些方法面临诸如非保形接触、固定不稳定、组织损伤和/或疤痕形成等挑战。在此,我们报告一种基于石墨烯纳米复合材料薄层的电生物粘合剂(e-生物粘合剂)界面,它能够在多种湿动态组织上实现生物电子设备的快速(5秒内形成粘附)、牢固(界面韧性>400 J/m)且按需可拆卸整合。e-生物粘合剂界面的电导率(>2.6 S/m)进一步实现了双向生物电子通信。我们基于离体猪模型和体内大鼠模型展示了e-生物粘合剂界面的生物相容性、适用性、机械和电气稳定性以及记录和刺激功能。这些发现为改善组织-设备整合及提升生物集成电子设备性能提供了一种有前景的策略。