Suppr超能文献

左侧半球卒中后手的自适应控制发生反转,右侧半球卒中后则丧失这种控制。

Adaptive control is reversed between hands after left hemisphere stroke and lost following right hemisphere stroke.

机构信息

Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.

Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD 21205.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2212726120. doi: 10.1073/pnas.2212726120. Epub 2023 Jan 30.

Abstract

Human motor adaptability is of utmost utility after neurologic injury such as unilateral stroke. For successful adaptive control of movements, the nervous system must learn to correctly identify the source of a movement error and predictively compensate for this error. The current understanding is that in bimanual tasks, this process is flexible such that errors are assigned to, and compensated for, by the limb that is more likely to produce those errors. Here, we tested the flexibility of the error assignment process in right-handed chronic stroke survivors using a bimanual reaching task in which the hands jointly controlled a single cursor. We predicted that the nondominant left hand in neurotypical adults and the paretic hand in chronic stroke survivors will be more responsible for cursor errors and will compensate more within a trial and learn more from trial to trial. We found that in neurotypical adults, the nondominant left hand does compensate more than the right hand within a trial but learns less trial-to-trial. After a left hemisphere stroke, the paretic right hand compensates more than the nonparetic left hand within-trial but learns less trial-to-trial. After a right hemisphere stroke, the paretic left hand neither corrects more within-trial nor learns more trial-to-trial. Thus, adaptive control of visually guided bimanual reaching movements is reversed between hands after the left hemisphere stroke and lost following the right hemisphere stroke. These results indicate that responsibility assignment is not fully flexible but depends on a central mechanism that is lateralized to the right hemisphere.

摘要

人类运动适应性在神经损伤后非常有用,例如单侧中风。为了成功地进行运动自适应控制,神经系统必须学会正确识别运动误差的来源,并对此进行预测性补偿。目前的理解是,在双手任务中,这个过程是灵活的,即误差被分配给更有可能产生这些误差的肢体,并进行补偿。在这里,我们使用双手共同控制单个光标来测试右手慢性中风幸存者的错误分配过程的灵活性。我们预测,在神经典型成年人中,非优势手(左手)和慢性中风幸存者的瘫痪手(右手)将更负责光标误差,并在一次试验内进行更多补偿,并从一次试验到另一次试验中学习更多。我们发现,在神经典型成年人中,非优势手(左手)在一次试验内比优势手(右手)补偿更多,但从一次试验到另一次试验中学习更少。在左半球中风后,瘫痪的右手(右手)比非瘫痪的左手(左手)在一次试验内补偿更多,但从一次试验到另一次试验中学习更少。在右半球中风后,瘫痪的左手(左手)既不在一次试验内纠正更多,也不在一次试验到另一次试验中学习更多。因此,视觉引导的双手协调达运动的自适应控制在左半球中风后在手部之间逆转,在右半球中风后丧失。这些结果表明,责任分配不是完全灵活的,而是取决于一个偏向右侧大脑半球的中央机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验