Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, United States of America.
Department of Radiology, University of Chicago, Chicago, IL, United States of America.
Phys Med Biol. 2023 Mar 23;68(7). doi: 10.1088/1361-6560/acb754.
. Developing Machine Learning models (N Gorre et al 2023) for clinical applications from scratch can be a cumbersome task requiring varying levels of expertise. Seasoned developers and researchers may also often face incompatible frameworks and data preparation issues. This is further complicated in the context of diagnostic radiology and oncology applications, given the heterogenous nature of the input data and the specialized task requirements. Our goal is to provide clinicians, researchers, and early AI developers with a modular, flexible, and user-friendly software tool that can effectively meet their needs to explore, train, and test AI algorithms by allowing users to interpret their model results. This latter step involves the incorporation of interpretability and explainability methods that would allow visualizing performance as well as interpreting predictions across the different neural network layers of a deep learning algorithm.. To demonstrate our proposed tool, we have developed the CRP10 AI Application Interface (CRP10AII) as part of the MIDRC consortium. CRP10AII is based on the web service Django framework in Python. CRP10AII/Django/Python in combination with another data manager tool/platform, data commons such as Gen3 can provide a comprehensive while easy to use machine/deep learning analytics tool. The tool allows to test, visualize, interpret how and why the deep learning model is performing. The major highlight of CRP10AII is its capability of visualization and interpretability of otherwise Blackbox AI algorithms.. CRP10AII provides many convenient features for model building and evaluation, including: (1) query and acquire data according to the specific application (e.g. classification, segmentation) from the data common platform (Gen3 here); (2) train the AI models from scratch or use pre-trained models (e.g. VGGNet, AlexNet, BERT) for transfer learning and test the model predictions, performance assessment, receiver operating characteristics curve evaluation; (3) interpret the AI model predictions using methods like SHAPLEY, LIME values; and (4) visualize the model learning through heatmaps and activation maps of individual layers of the neural network.. Unexperienced users may have more time to swiftly pre-process, build/train their AI models on their own use-cases, and further visualize and explore these AI models as part of this pipeline, all in an end-to-end manner. CRP10AII will be provided as an open-source tool, and we expect to continue developing it based on users' feedback.
. 从头开始为临床应用开发机器学习模型(N Gorre 等人,2023 年)可能是一项繁琐的任务,需要不同程度的专业知识。经验丰富的开发人员和研究人员也可能经常面临不兼容的框架和数据准备问题。在诊断放射学和肿瘤学应用中,由于输入数据的异质性和专门任务要求,情况会更加复杂。我们的目标是为临床医生、研究人员和早期 AI 开发人员提供一个模块化、灵活和用户友好的软件工具,使他们能够有效地满足他们探索、训练和测试 AI 算法的需求,并允许用户解释他们的模型结果。后一步涉及到可解释性和可解释性方法的纳入,以便在深度学习算法的不同神经网络层中可视化性能和解释预测。. 为了展示我们提出的工具,我们作为 MIDRC 联盟的一部分开发了 CRP10 AI 应用程序接口(CRP10AII)。CRP10AII 基于 Python 中的 Web 服务 Django 框架。CRP10AII/Django/Python 与另一个数据管理器工具/平台(例如 Gen3)结合使用,可以提供一个全面而易于使用的机器/深度学习分析工具。该工具允许测试、可视化、解释深度学习模型的工作方式和原因。CRP10AII 的主要亮点是它能够可视化和解释 otherwise Blackbox AI 算法。. CRP10AII 为模型构建和评估提供了许多方便的功能,包括:(1)根据特定应用程序(例如分类、分割)从数据公共平台(此处为 Gen3)查询和获取数据;(2)从头开始训练 AI 模型或使用预训练模型(例如 VGGNet、AlexNet、BERT)进行迁移学习并测试模型预测、性能评估、接收者操作特征曲线评估;(3)使用 SHAPLEY、LIME 值等方法解释 AI 模型预测;(4)通过神经网络各个层的热图和激活图可视化模型学习。. 经验不足的用户可能有更多的时间快速预处理、在自己的用例上构建/训练自己的 AI 模型,并进一步以端到端的方式可视化和探索这些 AI 模型。CRP10AII 将作为一个开源工具提供,我们期望根据用户的反馈继续开发它。