Suppr超能文献

基于结构方程模型的交通相关空气污染与炎症生物标志物的关系研究。

Relationship between traffic-related air pollution and inflammation biomarkers using structural equation modeling.

机构信息

Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America.

Health Effects Institute, Boston, MA, United States of America.

出版信息

Sci Total Environ. 2023 Apr 20;870:161874. doi: 10.1016/j.scitotenv.2023.161874. Epub 2023 Jan 27.

Abstract

BACKGROUND

Evidence suggests that exposure to traffic-related air pollution (TRAP) and social stressors can increase inflammation. Given that there are many different markers of TRAP exposure, socio-economic status (SES), and inflammation, analytical approaches can leverage multiple markers to better elucidate associations. In this study, we applied structural equation modeling (SEM) to assess the association between a TRAP construct and a SES construct with an inflammation construct.

METHODS

This analysis was conducted as part of the Community Assessment of Freeway Exposure and Health (CAFEH; N = 408) study. Air pollution was characterized using a spatiotemporal model of particle number concentration (PNC) combined with individual participant time-activity adjustment (TAA). TAA-PNC and proximity to highways were considered for a construct of TRAP exposure. Participant demographics on education and income for an SES construct were assessed via questionnaires. Blood samples were analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α receptor II (TNFRII), which were considered for the construct for inflammation. We conducted SEM and compared our findings with those obtained using generalized linear models (GLM).

RESULTS

Using GLM, TAA-PNC was associated with multiple inflammation biomarkers. An IQR (10,000 particles/cm) increase of TAA-PNC was associated with a 14 % increase in hsCRP in the GLM. Using SEM, the association between the TRAP construct and the inflammation construct was twice as large as the associations with any individual inflammation biomarker. SES had an inverse association with inflammation in all models. Using SEM to estimate the indirect effects of SES on inflammation through the TRAP construct strengthened confidence in the association of TRAP with inflammation.

CONCLUSION

Our TRAP construct resulted in stronger associations with a combined construct for inflammation than with individual biomarkers, reinforcing the value of statistical approaches that combine multiple, related exposures or outcomes. Our findings are consistent with inflammatory risk from TRAP exposure.

摘要

背景

有证据表明,接触交通相关的空气污染(TRAP)和社会压力源会增加炎症。鉴于 TRAP 暴露、社会经济地位(SES)和炎症有许多不同的标志物,分析方法可以利用多个标志物来更好地阐明它们之间的关联。在这项研究中,我们应用结构方程模型(SEM)来评估 TRAP 构建体与 SES 构建体与炎症构建体之间的关联。

方法

本分析是作为社区高速公路暴露与健康评估(CAFEH;N=408)研究的一部分进行的。空气污染使用颗粒物浓度(PNC)的时空模型以及个体参与者时间活动调整(TAA)进行描述。TAA-PNC 和靠近高速公路的情况被考虑用于构建 TRAP 暴露。通过问卷调查评估参与者的教育和收入 SES 构建体的人口统计学特征。血液样本用于分析高敏 C 反应蛋白(hsCRP)、白细胞介素 6(IL-6)和肿瘤坏死因子-α受体 II(TNFRII),这些被认为是炎症的构建体。我们进行了 SEM,并将我们的发现与广义线性模型(GLM)的结果进行了比较。

结果

使用 GLM,TAA-PNC 与多种炎症生物标志物相关。在 GLM 中,TAA-PNC 每增加一个 IQR(10,000 个颗粒/cm),hsCRP 增加 14%。使用 SEM,TRAP 构建体与炎症构建体之间的关联是与任何单个炎症生物标志物之间关联的两倍。SES 在所有模型中与炎症呈负相关。使用 SEM 来估计 SES 通过 TRAP 构建体对炎症的间接影响,增强了 TRAP 与炎症之间关联的置信度。

结论

我们的 TRAP 构建体与炎症的综合构建体的关联比与单个生物标志物的关联更强,这强化了结合多个相关暴露或结果的统计方法的价值。我们的发现与 TRAP 暴露导致炎症的风险一致。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验