Department of Environmental Health , Boston University School of Public Health , 715 Albany Street , Boston , Massachusetts 02118 , United States.
Department of Civil and Environmental Engineering , Tufts University , 200 College Avenue , Medford , Massachusetts 02155 , United States.
Environ Sci Technol. 2018 Jun 19;52(12):6985-6995. doi: 10.1021/acs.est.8b00292. Epub 2018 May 25.
Significant spatial and temporal variation in ultrafine particle (UFP; <100 nm in diameter) concentrations creates challenges in developing predictive models for epidemiological investigations. We compared the performance of land-use regression models built by combining mobile and stationary measurements (hybrid model) with a regression model built using mobile measurements only (mobile model) in Chelsea and Boston, MA (USA). In each study area, particle number concentration (PNC; a proxy for UFP) was measured at a stationary reference site and with a mobile laboratory driven along a fixed route during an ∼1-year monitoring period. In comparing PNC measured at 20 residences and PNC estimates from hybrid and mobile models, the hybrid model showed higher Pearson correlations of natural log-transformed PNC ( r = 0.73 vs 0.51 in Chelsea; r = 0.74 vs 0.47 in Boston) and lower root-mean-square error in Chelsea (0.61 vs 0.72) but no benefit in Boston (0.72 vs 0.71). All models overpredicted log-transformed PNC by 3-6% at residences, yet the hybrid model reduced the standard deviation of the residuals by 15% in Chelsea and 31% in Boston with better tracking of overnight decreases in PNC. Overall, the hybrid model considerably outperformed the mobile model and could offer reduced exposure error for UFP epidemiology.
超细颗粒(UFP;直径<100nm)浓度存在显著的时空变化,这给流行病学调查开发预测模型带来了挑战。我们比较了在切尔西和波士顿(美国马萨诸塞州),通过结合移动和固定测量(混合模型)构建的与仅使用移动测量构建的回归模型(移动模型)的性能。在每个研究区域,在一个固定的监测期间,在一个固定的参考站点和一个沿着固定路线行驶的移动实验室中测量粒子数浓度(PNC;UFP 的替代物)。在比较 20 个住宅处测量的 PNC 与混合和移动模型的 PNC 估计值时,混合模型显示出更高的自然对数变换 PNC 的 Pearson 相关性(切尔西为 0.73 与 0.51;波士顿为 0.74 与 0.47),且在切尔西的均方根误差更低(0.61 与 0.72),但在波士顿没有好处(0.72 与 0.71)。所有模型都在住宅处将对数变换后的 PNC 高估了 3-6%,但混合模型将切尔西的残差标准差降低了 15%,并更好地跟踪了 PNC 的夜间下降。总体而言,混合模型大大优于移动模型,并能为 UFP 流行病学提供更低的暴露误差。