Suppr超能文献

沙门氏菌效应蛋白 SopB 通过重排细胞骨架中间丝蛋白 vimentin 以维持复制空泡从而促进高效感染。

Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection.

机构信息

Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.

出版信息

Nat Commun. 2023 Jan 30;14(1):478. doi: 10.1038/s41467-023-36123-w.

Abstract

A variety of intracellular bacteria modulate the host cytoskeleton to establish subcellular niches for replication. However, the role of intermediate filaments, which are crucial for mechanical strength and resilience of the cell, and in bacterial vacuole preservation remains unclear. Here, we show that Salmonella effector SopB reorganizes the vimentin network to form cage-like structures that surround Salmonella-containing vacuoles (SCVs). Genetic removal of vimentin markedly disrupts SCV organization, significantly reduces bacterial replication and cell death. Mechanistically, SopB uses its N-terminal Cdc42-binding domain to interact with and activate Cdc42 GTPase, which in turn recruits vimentin around SCVs. A high-content imaging-based screening identified that MEK1/2 inhibition led to vimentin dispersion. Our work therefore elucidates the signaling axis SopB-Cdc42-MEK1/2 as mobilizing host vimentin to maintain concrete SCVs and identifies a mechanism contributing to Salmonella replication. Importantly, Trametinib, a clinically-approved MEK1/2 inhibitor identified in the screen, displayed significant anti-infection efficacy against Salmonella both in vitro and in vivo, and may provide a therapeutic option for treating drug-tolerant salmonellosis.

摘要

多种细胞内细菌调节宿主细胞骨架,为复制建立亚细胞小生境。然而,细胞中间丝的作用——对于细胞的机械强度和弹性至关重要——以及在细菌空泡保存中的作用仍不清楚。在这里,我们发现沙门氏菌效应蛋白 SopB 重组了波形蛋白网络,形成围绕含有沙门氏菌的空泡 (SCV) 的笼状结构。去除波形蛋白的遗传缺陷显著破坏了 SCV 的组织,显著降低了细菌的复制和细胞死亡。从机制上讲,SopB 使用其 N 端 Cdc42 结合结构域与 Cdc42 GTPase 相互作用并激活 Cdc42 GTPase,后者反过来招募波形蛋白围绕 SCV。基于高内涵成像的筛选鉴定出 MEK1/2 抑制导致波形蛋白弥散。因此,我们的工作阐明了 SopB-Cdc42-MEK1/2 信号轴作为动员宿主波形蛋白来维持具体的 SCV,并确定了促进沙门氏菌复制的机制。重要的是,在筛选中发现的一种临床批准的 MEK1/2 抑制剂 Trametinib,在体外和体内对沙门氏菌均显示出显著的抗感染疗效,可能为治疗耐药性沙门氏菌病提供一种治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c2f/9886915/3c3a61ad0540/41467_2023_36123_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验