Suppr超能文献

MmCMS:结直肠癌的小鼠模型共识分子亚型。

MmCMS: mouse models' consensus molecular subtypes of colorectal cancer.

机构信息

The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.

Cancer Research UK Beatson Institute, Glasgow, UK.

出版信息

Br J Cancer. 2023 Mar;128(7):1333-1343. doi: 10.1038/s41416-023-02157-6. Epub 2023 Jan 30.

Abstract

BACKGROUND

Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue.

METHODS

Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n = 577) and mouse (n = 57 across n = 8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers.

RESULTS

We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours.

CONCLUSIONS

When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package enables researchers to select suitable mouse models of human CRC subtype for their experimental testing.

摘要

背景

结直肠癌(CRC)原发肿瘤在分子上可分为四个共识分子亚型(CMS1-4)。基因工程小鼠模型旨在忠实地模拟人类癌症的复杂性,并且在适当对齐时,代表了测试新药物治疗方法的理想临床前系统。尽管其重要性,但双物种分类受到缺乏可靠方法的限制。在这里,我们利用、开发和测试了一套用于 CRC 组织的人类到小鼠 CMS 分类的选项。

方法

使用来自 CRC 肿瘤的既定数据集的转录数据,包括人类(TCGA 队列;n=577)和小鼠(n=57,跨越 n=8 种基因型)肿瘤,结合随机森林和最近模板预测算法,以及基因本体收集,我们全面评估了一套新的双物种分类器的性能。

结果

我们开发了三种方法:MmCMS-A;一种基于基因的分类器,MmCMS-B;一种基于本体的方法和 MmCMS-C;一种涵盖多个生物学和组织学信号级联的组合途径系统。尽管所有选项都可以识别与富含基质的 CMS4 样生物学相关的肿瘤,但 MmCMS-A 无法准确分类小鼠肿瘤中上皮样亚型(CMS2/3)的生物学基础。

结论

当将基于人类的转录分类器应用于小鼠肿瘤数据时,通路级分类器而不是单个基因级系统是最佳选择。我们的 R 包使研究人员能够为他们的实验测试选择合适的人类 CRC 亚型的小鼠模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40c0/10050155/e0bc4310a5e7/41416_2023_2157_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验