Suppr超能文献

DeepCC:一种基于深度学习的新型癌症分子亚型分类框架。

DeepCC: a novel deep learning-based framework for cancer molecular subtype classification.

作者信息

Gao Feng, Wang Wei, Tan Miaomiao, Zhu Lina, Zhang Yuchen, Fessler Evelyn, Vermeulen Louis, Wang Xin

机构信息

Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.

Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Oncogenesis. 2019 Aug 16;8(9):44. doi: 10.1038/s41389-019-0157-8.

Abstract

Molecular subtyping of cancer is a critical step towards more individualized therapy and provides important biological insights into cancer heterogeneity. Although gene expression signature-based classification has been widely demonstrated to be an effective approach in the last decade, the widespread implementation has long been limited by platform differences, batch effects, and the difficulty to classify individual patient samples. Here, we describe a novel supervised cancer classification framework, deep cancer subtype classification (DeepCC), based on deep learning of functional spectra quantifying activities of biological pathways. In two case studies about colorectal and breast cancer classification, DeepCC classifiers and DeepCC single sample predictors both achieved overall higher sensitivity, specificity, and accuracy compared with other widely used classification methods such as random forests (RF), support vector machine (SVM), gradient boosting machine (GBM), and multinomial logistic regression algorithms. Simulation analysis based on random subsampling of genes demonstrated the robustness of DeepCC to missing data. Moreover, deep features learned by DeepCC captured biological characteristics associated with distinct molecular subtypes, enabling more compact within-subtype distribution and between-subtype separation of patient samples, and therefore greatly reduce the number of unclassifiable samples previously. In summary, DeepCC provides a novel cancer classification framework that is platform independent, robust to missing data, and can be used for single sample prediction facilitating clinical implementation of cancer molecular subtyping.

摘要

癌症的分子亚型分类是迈向更个体化治疗的关键一步,并为癌症异质性提供了重要的生物学见解。尽管基于基因表达特征的分类在过去十年中已被广泛证明是一种有效的方法,但长期以来,其广泛应用一直受到平台差异、批次效应以及难以对个体患者样本进行分类的限制。在此,我们描述了一种基于深度学习功能谱来量化生物途径活性的新型监督式癌症分类框架——深度癌症亚型分类(DeepCC)。在两项关于结直肠癌和乳腺癌分类的案例研究中,与其他广泛使用的分类方法(如随机森林(RF)、支持向量机(SVM)、梯度提升机(GBM)和多项逻辑回归算法)相比,DeepCC分类器和DeepCC单样本预测器均实现了总体更高的敏感性、特异性和准确性。基于基因随机二次抽样的模拟分析证明了DeepCC对缺失数据的稳健性。此外,DeepCC学习到的深度特征捕捉到了与不同分子亚型相关的生物学特征,使患者样本在亚型内分布更紧凑、亚型间分离更明显,从而大大减少了之前无法分类的样本数量。总之,DeepCC提供了一种新型癌症分类框架,该框架与平台无关,对缺失数据具有稳健性,可用于单样本预测,有助于癌症分子亚型分类的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/6697729/7ce719867d50/41389_2019_157_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验