Suppr超能文献

使用季节分解方法研究精神分裂症中基于任务的信心动态变化。

Dynamics of task-based confidence in schizophrenia using seasonal decomposition approach.

作者信息

Badal Varsha D, Depp Colin A, Pinkham Amy E, Harvey Philip D

机构信息

Department of Psychiatry, University of California San Diego, San Diego, CA, USA.

Sam and Rose Stein Institute for Research on Aging, University of California San Diego, San Diego, CA, USA.

出版信息

Schizophr Res Cogn. 2023 Jan 24;32:100278. doi: 10.1016/j.scog.2023.100278. eCollection 2023 Jun.

Abstract

OBJECTIVE

Introspective Accuracy (IA) is a metacognitive construct that refers to alignment of self-generated accuracy judgments, confidence, and objective information regarding performance. IA not only refers to accuracy and confidence during tasks, but also predicts functional outcomes. The consistency and magnitude of IA deficits suggest a sustained disconnect between self-assessments and actual performance. The cognitive origins of IA are unclear and are not simply due to poor performance. We tried to capture task and diagnosis-related differences through examining confidence as a timeseries.

METHOD

This relatively large sample (N = 171; Bipolar = 71, Schizophrenia = 100) study used item by item confidence judgments for tasks including the Wisconsin Card Sorting Task (WCST) and the Emotion Recognition task (ER-40). Using a seasonal decomposition approach and AutoRegressive, Integrative and Moving Averages (ARIMA) time-series analyses we tested for the presence of randomness and perseveration.

RESULTS

For the WCST, comparisons across participants with schizophrenia and bipolar disorder found similar trends and residuals, thus excluding perseverative or random responding. However, seasonal components were weaker in participants with schizophrenia, reflecting a reduced impact of feedback on confidence. In contrast, for the ER40, which does not require identification of a sustained construct, seasonal, trend, and residual analyses were highly comparable.

CONCLUSION

Seasonal analysis revealed that confidence judgments in participants with schizophrenia on tasks requiring responses to feedback reflected diminished incorporation of external information, not random or preservative responding. These analyses highlight how time series analyses can specify potential faulty processes for future intervention.

摘要

目的

内省准确性(IA)是一种元认知结构,指的是自我生成的关于表现的准确性判断、信心与客观信息之间的一致性。IA不仅指任务执行过程中的准确性和信心,还能预测功能结果。IA缺陷的一致性和程度表明自我评估与实际表现之间存在持续的脱节。IA的认知起源尚不清楚,并非仅仅是由于表现不佳所致。我们试图通过将信心作为一个时间序列来考察任务和诊断相关的差异。

方法

这项相对较大样本量(N = 171;双相情感障碍患者71例,精神分裂症患者100例)的研究,针对包括威斯康星卡片分类任务(WCST)和情绪识别任务(ER - 40)在内的任务,采用逐项信心判断。使用季节性分解方法以及自回归积分滑动平均(ARIMA)时间序列分析,我们对随机性和持续性的存在进行了测试。

结果

对于WCST,对精神分裂症患者和双相情感障碍患者的比较发现了相似的趋势和残差,从而排除了持续性或随机反应。然而,精神分裂症患者的季节性成分较弱,这反映出反馈对信心的影响较小。相比之下,对于不需要识别持续结构的ER40,季节性、趋势和残差分析具有高度可比性。

结论

季节性分析表明,精神分裂症患者在需要对反馈做出反应的任务上的信心判断反映出外部信息的整合减少,而非随机或持续性反应。这些分析突出了时间序列分析如何能够明确潜在的错误过程以供未来干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef7/9883296/c0d937cc517f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验