Suppr超能文献

用于锂电池的熵驱动液体电解质。

Entropy-Driven Liquid Electrolytes for Lithium Batteries.

机构信息

Department of Radiation Science and Technology, Delft University of Technology, Delft, 2629JB, The Netherlands.

The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Adv Mater. 2023 Apr;35(17):e2210677. doi: 10.1002/adma.202210677. Epub 2023 Mar 16.

Abstract

Developing liquid electrolytes with higher kinetics and enhanced interphase stability is one of the key challenges for lithium batteries. However, the poor solubility of lithium salts in solvents sets constraints that compromises the electrolyte properties. Here, it is shown that introducing multiple salts to form a high-entropy solution, alters the solvation structure, which can be used to raise the solubility of specific salts and stabilize electrode-electrolyte interphases. The prepared high-entropy electrolytes significantly enhance the cycling and rate performance of lithium batteries. For lithium-metal anodes the reversibility exceeds 99%, which extends the cycle life of batteries even under aggressive cycling conditions. For commercial batteries, combining a graphite anode with a LiNi Co Mn O cathode, more than 1000 charge-discharge cycles are achieved while maintaining a capacity retention of more than 90%. These performance improvements with respect to regular electrolytes are rationalized by the unique features of the solvation structure in high-entropy electrolytes. The weaker solvation interaction induced by the higher disorder results in improved lithium-ion kinetics, and the altered solvation composition leads to stabilized interphases. Finally, the high-entropy, induced by the presence of multiple salts, enables a decrease in melting temperature of the electrolytes and thus enables lower battery operation temperatures without changing the solvents.

摘要

开发具有更高动力学和增强相稳定性的液体电解质是锂电池的关键挑战之一。然而,锂盐在溶剂中的溶解度较差限制了电解质的性能。在这里,研究表明,引入多种盐形成高熵溶液可以改变溶剂化结构,从而提高特定盐的溶解度并稳定电极-电解质界面。所制备的高熵电解质显著提高了锂电池的循环和倍率性能。对于锂金属阳极,其可逆性超过 99%,即使在苛刻的循环条件下也延长了电池的循环寿命。对于商业电池,将石墨阳极与 LiNi Co Mn O 阴极结合使用,可实现超过 1000 次充放电循环,同时保持超过 90%的容量保持率。与常规电解质相比,高熵电解质中独特的溶剂化结构可以合理地解释这些性能的提高。更高无序引起的较弱溶剂化相互作用导致锂离子动力学得到改善,而改变的溶剂化组成导致稳定的界面。最后,多种盐的存在引起的高熵使电解质的熔点降低,从而可以在不改变溶剂的情况下降低电池的工作温度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验